

Institute for Plant Genomics & Biotechnology

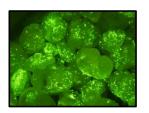
Institute for Plant Genomics & Biotechnology

MAYRA FAION MOLINA
Research Specialist IV, Multi-Crop
Transformation Facility Director
mayrafmolina@tamu.edu

MARCO MOLINA

Research Specialist III, Multi-Crop
Transformation Facility Co-Director
marco.molina@tamu.edu

MARCELA B.D. DELLA GRACIA
Research Associate

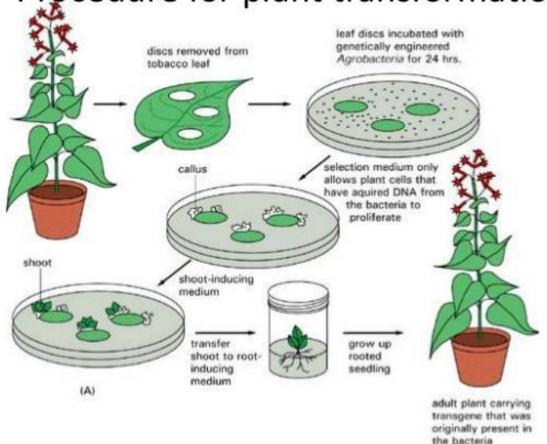


Research Assistant

"We provide high quality plant transformation services to the scientific community across Texas A&M AgriLife, TAMU, the Texas A&M University System, and external collaborators."

Ongoing projects

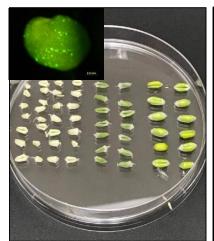
- AgriLife Seed Grant projects (15)
- AgriLife Commercial Wheat genotypes
- AgriLife Commercial Peanuts genotypes
- AgriLife Crop Improvement Sorghum, Peanuts, Rice
- AgriLife Dallas Center Potato
- AgriLife Uvalde Center Onion
- IPGB-MTF- Cotton
- X-Grant project (Wheat Rice and Cotton)
- Protocol development: Amaranthus, Tomato,
 Cantaloupe, Coffee, Spinach

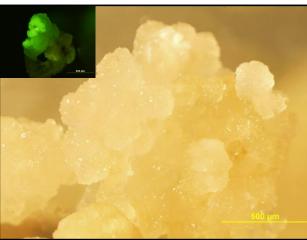


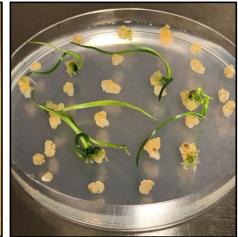
General procedure Agrobacterium-mediated transformation

Procedure for plant transformation

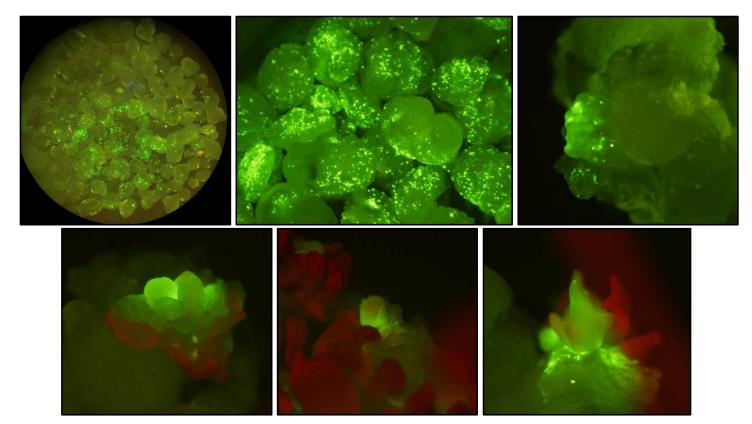
- Non-model crops
- Non-model varieties
- Commercial lines
- Seasonal explant availability
- Independent trasnformants


- Agro-mediated
- Biolistic transformation
- Selectable marker
- Transformation Efficiency
- Molecular analysis
- Traceability
- Gene Editing/CRISPR efficiency


IMAGE: Mol bio of the cell by Albert (pg no:599)



AgriLife commercial Wheat genotypes (3)



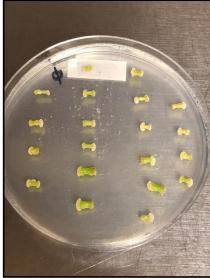
Challenges: Specific fresh embryo stage, laborious axis excision, switching to bombardment...

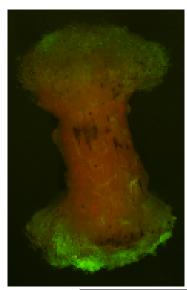
⊙AgriLife - HR Wheat

✓ pPTN-EYFP bombardment optimization

✓ February 2019 update:

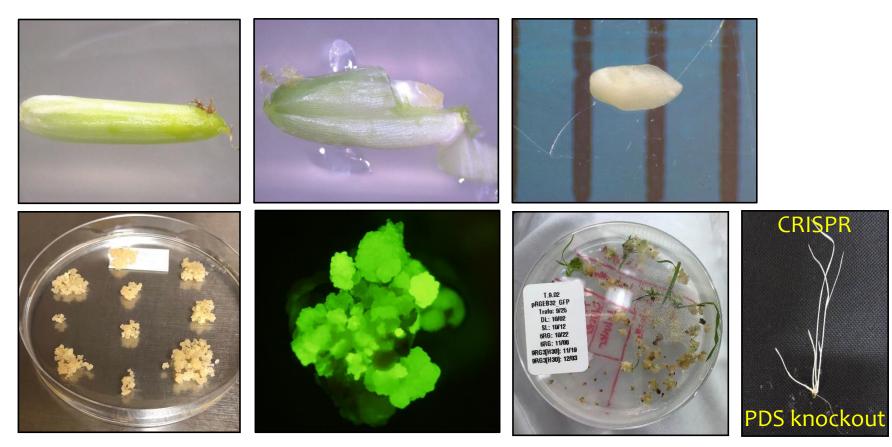
- > 21 independent experiments
- > 5207 immature embryos bombarded
- ~ 26,000 plants regenerated
- 5 different target constructs tested
- Under molecular analysis (bulk)





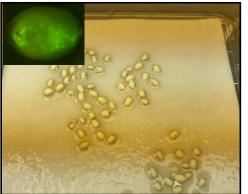
AgriLife Dallas Center Potato

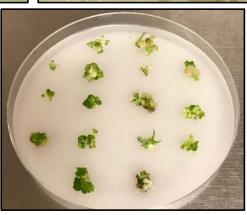
Russet Norkotah, Blue Potato, Desiree, Kathadin, 24M28



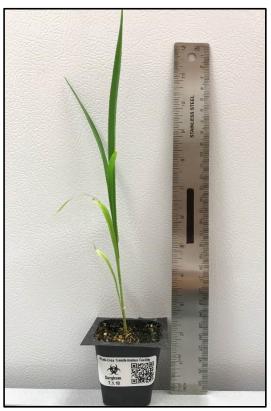
Challenges: protocol development for every independent variety.

- AgriLife Crop Improvement (Sorghum, Peanuts, Rice)
- ✓ Rice Presidio line >>>> Tissue culture Protocol validated


Challenges and next steps: Specific fresh embryo stage, laborious embryo excision, Mature embryo protocol.



- AgriLife Crop Improvement (Sorghum, Peanuts, Rice)
- √ RTx430 + 11 varieties Tissue culture Protocol validated





Challenges: Specific fresh embryo stage, laborious embryo excision, protocol for every independent line and Development of Agrobacterium-mediated transformation.

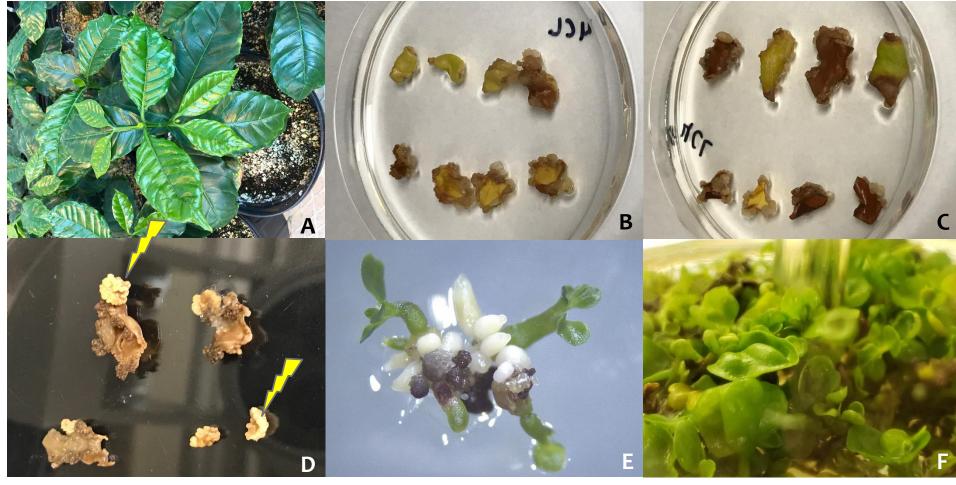
AgriLife Crop Improvement (Sorghum, Peanuts, Rice)

Schubert >>> Tissue culture Protocol validated

Challenge and next step: Development of Agrobacterium-mediated transformation

AgriLife Uvalde Center - Onion

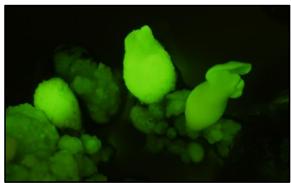
✓ Double Haploid



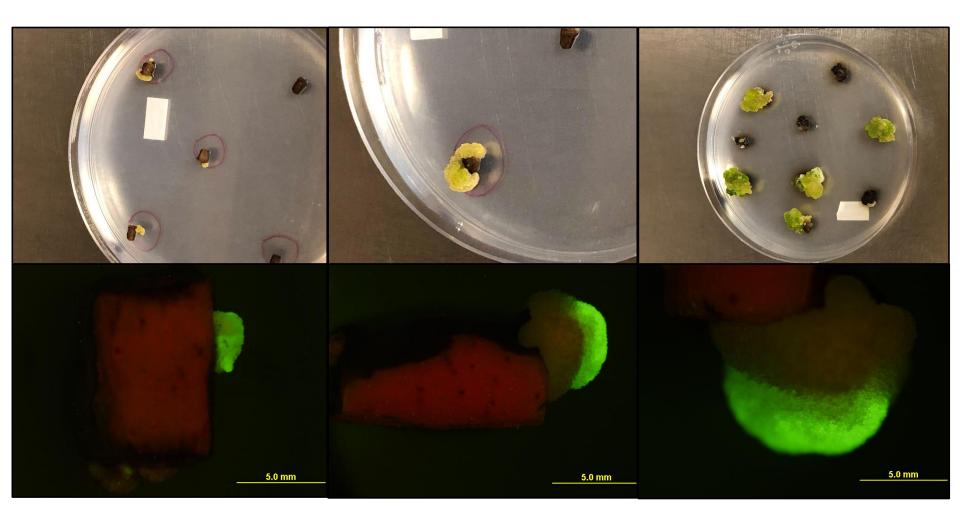
Challenges: Extremely low efficiency method; genotype specificity; Ongoing protocol validation.

Coffee

Figures: (A) Initial explant; (B and C) calli induction after 4 weeks; (D) beginning of embryogenic calli formation; (E) Embryogenic calli germination; (F) Plant Elongation


MTF Cotton

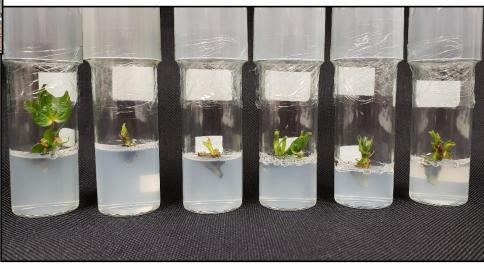
✓ Gene Editing - Coker312



February 2019 update: 100+ regenerated plants delivered to Dr. Libo Shan lab., with two different constructs.

MTF Cotton

CA4002 – Use of developmental genes and protocol validation


MTF Cotton

Cotton in vitro cultivation/propagation

TM-1 > barbadense > tomentosum > mustelinum

Ongoing Projects - Summary

	Tissue culture protocol validation		Agro-Mediated Transformation Protocol Validation		Biolistic Transformation Protocol Validation	CRISPR Protocol validation
Sorghum	\checkmark	12	\checkmark	1	-	Ongoing
Cotton	\checkmark	1	\checkmark	1	-	\checkmark
Sugarcane	\checkmark	2	\checkmark	2	\checkmark	-
Coffee	\checkmark	1	-	-	-	-
Tobacco	\checkmark	1	-	-	-	-
Wheat	\checkmark	3	\checkmark	1	\checkmark	\checkmark
Potato	\checkmark	4	\checkmark	3	-	\checkmark
Onion	\checkmark	1	-	-	-	-
Rice	\checkmark	1	\checkmark	1	\checkmark	\checkmark
Peanuts	\checkmark	1	Ongoing	-	-	-
Melon	\checkmark	1	\checkmark	1	-	Ongoing
Spinach	Ongoing	1	Ongoing	-	-	-
Tomato	\checkmark	2	Ongoing	-	-	-
Amaranthus		1	Ongoing	-	-	-

USA Plant Transformation Facilities

https://cropinnovation.cals.wisc.edu/pricing-2/

https://web.uri.edu/pbl/plant-transformation/

https://btiscience.org/our-research/research-facilities/biotechnology-center/

https://www.biotech.iastate.edu/biotechnolog y-service-facilities/plant-transformation-facility/

https://www.canr.msu.edu/ptc/

https://plantsciencesweb.missouri.edu/muptcf/

https://sips.cals.cornell.edu/research/plant-transformation-facility/services-and-pricing/

https://ptrc.ucr.edu/hours2.html

https://crec.ifas.ufl.edu/facilities/transformation-lab/transgenic-citrus-order-form/

https://biotech.unl.edu/plant-transformation#tab2

https://ptf.ucdavis.edu/services

MAYRA FAION MOLINA
Research Specialist IV, Multi-Crop
Transformation Facility Director
mayrafmolina@tamu.edu

MARCO MOLINA

Research Specialist III, Multi-Crop
Transformation Facility Co-Director
marco.molina@tamu.edu

MARCELA B.D. DELLA GRACIA
Research Associate

Research Assistant

We provide high quality plant transformation services to the scientific community across Texas A&M AgriLife, TAMU, the Texas A&M University System, and external collaborators.

