Gene editing for crop improvement

Michael J. Thomson

Professor, Department of Soil and Crop Sciences Texas A&M University and Texas A&M AgriLife Research

"CRISPR Everywhere" The rise of gene editing

Explosion of CRISPR research began in 2012

Number of CRISPR publications per year

Number of CRISPR patents per year

CRISPR now impacting a wide range of fields:

- Basic biological research and functional genomics
- Medical research and human therapeutics
- Viral, bacterial, plant and animal research

CRISPR biology meets genome editing

http://sitn.hms.harvard.edu/flash/2014/crispr-a-game-changing-genetic-engineering-technique/

New tool for crop improvement: CRISPR-Cas9 genome editing

Bortesi and Fischer, 2015 Biotech. Advances

CRISPR-Cas9 genome editing process

- 1. Select genomic target
 - 20 bp sequence + PAM (NGG)
 - Online tools to avoid off-targets
- 2. Design sgRNA
 - Express sgRNA with small RNA promoter
 - Guide sequence matches target

Belhaj et al. (2015) Curr Opin Biotech

Ribonucleoprotein (RNP) direct delivery of CRISPR/Cas9 for "DNA-free" genome editing

TRENDS in Biotechnology

Kanchiswamy et al. 2015

TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGCAGAGGAATGGGTTGGACGGAGTGAC WT. -1 TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCT-CAGAGGAATGGGTTGGACGGAGTGAC -3/+1 AAACCGTTCAATGCTGGAGTTGGTCTTTGCTCt--CAGAGGAATGGGTTGGACGGAGTGAC TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTG+CAGAGGAATGGGTTGGACGGAGTGAC +1+1 TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGaCAGAGGAATGGGTTGGACGGAGTGAC TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGqCAGAGGAATGGGTTGGACGGAGTGAC +1 TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGcCAGAGGAATGGGTTGGACGGAGTGAC +1 Homozygous biallelic mutant (no.8) TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGaCAGAGGAATGGGTTGGACGGAGTGAC +1 Homozygous biallelic mutant (no.13) TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTG+CAGAGGAATGGGTTGGACGGAGTGAC +1

TCCAAACCGTTCAATGCTGGAGTTGGTCTTTGCTCCTGTCAGAGGAATGGGTTGGACGGAGTGAC +1 TCCAAACCGTTCAATGCTGGAGTGGTCTTTGCTCCT---AGGAATGGGTTGGACGGAGTGAC -4 Example of gene knockout in rice: OsPDS gene

Knocking out the rice phytoene desaturase gene gives a dwarf and albino phenotype

Shan et al (2013) Nat. Biotech.

Multiplex gene editing in rice

Shen et al. 2017 DEP1, EP3, Gn1a, GS3, GW2, LPA1, BADH2, Hd1

Future gene-edited products using TALEN technology

doi: 10.1111/pbi.12201

Plant Biotechnology Journal (2014) **12**, pp. 934–940

lournal

Plant Biotechnology

Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family

Dan Voytas, Chief Science Officer, Calyxt

100 75 50 25 0 Commodity Calyxt HO Soybean Linoleic Linolenic Saturated Oleic

High oleic soybean

- 80% oleic acid
- 20% less saturated fat
- Zero trans fats

Huan et al. 2014 Plant Biotechnology Journal

Product Candidate	Dis	covery P	hase I	Phase II	Phase III
Consumer Centric Products				i	
High Oleic Soybean*					
High Oleic / Low Lin Soybean*					
Improved Protein Composition	Soybean				
High Fiber Wheat*					
High Fiber Wheat II					
Reduced Gluten Wheat					
Improved Oil Composition Can	ola				
Cold Storable Potato*					
Reduced Browning Potato*					
Cold Storable / Reduced Brown	ning Potato				
Late Blight Resistant Potato					
Farmer Centric Products					
Drought Tolerant Soybean					
Improved Yield Soybean					
Herbicide Tolerant Soybean					
Powdery Mildew Resistant Whe	eat*				
Herbicide Tolerant Wheat					
Herbicide Tolerant Canola					
Improved Quality Alfalfa*					
Herbicide Tolerant Alfalfa					
* USDA confirmation that produ	uct is not a regulated artic	le under PPA 7 CFR p	art 340		
Sovbean	Wheat	Canola		Potato	Alfal

http://www.calyxt.com/products/products-in-our-development-pipeline/

IP scenario for Ag CRISPR applications

NEWS / 10.18.17

DuPont Pioneer and Broad Institute Join Forces to Enable Democratic CRISPR Licensing in Agriculture

By David Cameron

New partnership provides nonexclusive licenses to CRISPR-Cas9 IP for commercial agricultural research

"The Broad Institute recently announced a significant <u>cross-licensing effort for its</u> <u>CRISPR patents for agricultural</u> <u>applications</u>. The agreement brings together the Broad, Monsanto, DuPont Pioneer, Caribou Biosciences, ERS Genomics, and Vilnius University"

Sherkow 2018

Secretary Perdue Issues USDA Statement on Plant Breeding Innovation

Under its biotechnology regulations, **USDA does not currently regulate, or have any plans to regulate plants that could otherwise have been developed through traditional breeding techniques** as long as they are developed without the use of a plant pest as the donor or vector and they are not themselves plant pests. This can include plant varieties with the following changes:

Deletions: the change to the plant is solely a genetic deletion of any size.

Single base pair substitutions: the change to the plant is a single base pair substitution.

Insertions from compatible plant relatives: the change to the plant solely introduces nucleic acid sequences from a compatible relative that could otherwise cross with the recipient organism and produce viable progeny through traditional breeding.

Complete Null Segregants: off-spring of a genetically engineered plant that does not retain the change of its parent.

Regulated Article Letters of Inquiry

Data Updated: November 29 2018

🚔 Print

https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-iregulated/Regulated_Article_Letters_of_Inquiry

Show 25 🗘 entries

Date 🔶	Institution	Description
11/29/2018	Lygos, Inc.	GE Pichia kudriavzevii modified for Industrial Applications
11/8/2018	Arbiom, Inc.	GE Trichoderma reesei modified for Industrial Applications
10/22/2018	Suntory Flowers Limited	Importation of Cut Flowers of GE Chrysanthemum
10/15/2018	BASF Enzymes LLC	GE Trichoderma reesei modified for Industrial Applications
9/27/2018	Yield10 Bioscience	Genome Edited Camelina Lines Developed with CRISPR/Cas technology
8/6/2018	Illinois State University	Genome Edited Pennycress Lines Developed with CRISPR/Cas technology
7/12/2018	Iowa State University	Genome Edited Maize Developed with CRISPR/Cas technology
5/18/2018	University of Georgia	Soybean Engineered for Transposon Mutagenesis that uses Trans-acting siRN/
5/18/2018	University of Georgia	Soybean Engineered for Transposon Mutagenesis
5/14/2018	University of Florida	Genome Edited Tomato Developed with CRISPR/Cas Technology
3/30/2018	TAXA Biotechnologies, Inc.	Fragrant Moss Developed Without Plant Pest Components
3/20/2018	Calyxt, Inc.	Nutritionally-Enhanced Wheat Developed by TALEN Technology

USDA-APHIS "Am I regulated?" letters of inquiry

Gene-edited crops will generally show up here before being released onto the market

4/18/2016	DuPont Pione	er	Waxy Corn Developed by	Waxy Corn Developed by CRISPR-Cas Technology		
4/13/2016	Penn State		CRISPR-edited Mushroor	m		
		5/20/2015	Cellectis Plant Sciences	FAD3KO Soybean		
		5/18/2015	Benson Hill Biosystems, Inc.	BHB Hi-Yield Maize		
		5/5/2015	Cellectis Plant Sciences	FAD2KO Soybean Without	Materials from	

Proposed APHIS rule Public comments through August 5, 2019

Proposed rule largely follows the March 2018 statement:

Gene edited lines will not be subject to regulatory review if they fall under one of the defined exceptions Under proposed § 340.1(b)(1) through (4), modified GE plants would not be regulated or subject to a regulatory status review in accordance with § 340.4, if:

- The genetic modification is solely a deletion of any size; or
- The genetic modification is a single base pair substitution; or
- The genetic modification is solely introducing nucleic acid sequences from within the plant's natural gene pool or from editing nucleic acid sequences in a plant to correspond to a sequence known to occur in that plant's natural gene pool; or
- The plant is an offspring of a GE plant and does not retain the genetic modification in the GE plant parent.

(PR)

Movement of Certain Genetically Engineered Organisms

A Proposed Rule by the Animal and Plant Health Inspection Service on 06/06/2019

This document has a comment period that ends in 17 days. (08/05/2019)

SUBMIT A FORMAL COMMENT

Read the 736 public comments

Proposed Rule

https://www.federalregister.gov/documents/2019/06/06/2019-11704/movement-of-certain-genetically-engineered-organisms

Genomics, Gene Editing, and Transformation pipeline at Texas A&M University

Texas A&M AgriLife Research Crop Genome Editing Lab (CGEL)

- New facility recently set up on the Texas A&M campus for CRISPR-based genome editing in crops
- Will provide research, service, and training functions to optimize protocols, set up a high throughput gene editing pipeline, and enable development of gene-edited products
- Rice is being used to optimize more efficient genome editing approaches, including non-transgenic approaches

https://agrilife.org/cgel/

AgriLife Research Gene Editing Seed Grants

13 Seed Grant projects:

- Target gene sequence analysis
- gRNA design
- Transformation
 vector construct
 development
- Provide to transformation lab
- Assist in screening edited progeny to confirm mutations
- Rice, wheat, sorghum, cotton, potato, and melon

CGEL using a polycistronic tRNA-gRNA approach for multiplexed editing:

Multi-Crop Transformation Facility for Agrobacterium transformation, tissue culture, and regeneration Texas A&M University President's Excellence Fund X-Grant Program: "CRISPR Crops Initiative" Interdisciplinary project with 17 members

X-Grant Program: "CRISPR Crops Initiative"

Goal: to test innovative ideas enabling a high-throughput CRISPR gene editing workflow that will spur the next generation of breakthroughs in crop improvement

Develop a genomics and informatics pipeline for gene target selection and design

Analyze the wealth of genomics data to identify key genes to modify Optimize a highthroughput CRISPR delivery, regeneration, and validation pipeline

Test high-risk, highreward technologies to increase CRISPR efficiency 100-fold Initiate highpriority trait engineering to improve nutrition, crop yield, and stress tolerance

Apply these new approaches and technologies to highimpact pilot studies

Conclusions

- CRISPR/Cas9 has tremendous potential to make a massive impact in crop improvement
 - Leverage knowledge of genetics/genomics to better understand key genes and introduce novel traits
 - Make novel genetic diversity more accessible and readily usable
 - Empower plant breeders to precisely combine desired traits
- IP situation and government regulations for genome editing are in flux, but becoming more clear
- Consumer acceptance will be essential moving forward

Thank You!

