

Nanjing Agricultural University

May 29 2018

- Research background
- Development and characteristics of the CottonSNP80K array
- Potential utilization

1. Research background **Brief history for molecular markers** 1st: molecular hybridization: RFLP **2nd:** PCR-based technology: a. PCR technology: RAPD, ISSR, SSR et al. b. PCR+RE: AFLP, CAPs et al.

3rd: SNPs

Molecular markers have been successfully used in crops genetics and breeding SNPs are the most abundant DNA sequence variation present in plant genomes

SSR: low-throughput, labor-intensive, time-consuming

SNP: high-throughput, virtually unlimited, evenly distributed along the genome, bi-allelic , co-dominant

Cotton is the world's most important natural textile fiber and a significant oilseed crop.

Gossypium hirsutum acc. TM-1

Upland cotton has the highest yield, over 95% worldwide cotton production. Upland cotton is a model for polyploidy crop domestication and transgenic improvement

Modern upland cotton cultivars have narrow genetic diversity, especially in China, their development is from the limited quantity of resources in the United States. ⁵

The whole-genome sequencing of four different cotton species has made great progress

Species	Origin	Assembled size (Mb)	Scaffold N50	Contig N50 (kb)	Genes annotated	Transposable elements (%)	Sequencing technology	Ref
G. raimondii	CAAS	775	2.3 Mb	45	40,976	57	Illumina	Wang et al., 2012 NG
G. raimondii	JGI	761	18.8 Mb	136	37,505	61	Illumina,454, Sanger	Paterson et al., 2012 NATURE
<i>G. arboreum</i> SXY1	CAAS	1,694	666 kb	72	41,330	68.5	Illumina	Li et al., 2014 NG
G. hirsutum TM-1	NAU	2,432	1.6 Mb	34	70,478	64.8	Illumina, Sanger	Zhang et al., 2015 NB
G. hirsutum TM-1	CAAS	2,173	764 kb	80	76,943	66	Illumina	Li et al., 2015 NB
<i>G. barbadense</i> XH21	Esqua I	2,171	503 kb	72	77,526	65.1	Illumina,454, Pacbio	Liu et al., 2015 SR
G. barbadense 3-79	HAU	2,573	260 kb	24	80,876	69.1	Illumina	Yuan et al., 2015 SR

The availability of genomic re-sequencing data from different upland cotton accessions made it possible to develop SNP markers at a genome-wide level.

321 cultivated accessions 6.9X

Wang et al. Nat Genetics 2017

318 landraces and modern improved cultivars/lines
5X

Fang et al. Nat Genetics 2017

419 core collection of upland cotton accessions
6.55X

Ma et al. Nat Genetics 2018

Compared to re-sequencing analysis, SNP arrays, with loci known and addressable, can produce large-scale genotyping data through one hybridization procedure at a relatively low cost.

2. Development and characteristics of the CottonSNP80K array

A high-density SNP array for high-throughput intraspecific upland cotton genotyping identification. 8

Characteristics of the CottonSNP80K array

- Totally, 77,774 loci were successfully synthesized on the array.
- The average distance between adjacent SNPs was 24.9 Kb with 45,183 (58.10%) in the At- subgenomes and 32,591 loci (41.90%) in the Dt- subgenomes.
- 16,642 SNPs (21.40%) were tagged in the genic region of 9,902 genes, and 61,132 SNPs (78.60%) in intergenic regions.

SNP genotype calling in allotetraploid cotton

With 352 tested accessions, 77,252 loci (99.33%) had high call rates >95%. Of them, 59,502 SNPs (76.51%) showed polymorphic loci, with MAFs>0.05 for 57,071 loci (95.91%) and MAFs>0.1 for 48,940 (82.25%), respectively.

10

CottonSNP80K array had high genotyping accuracy, good repeatability, and distinguishability

		NGS & SNP Chip	
	TM-1 (62X)	95.40%	The SNPs of TM-1 and Hai7124 by comparing their
	Hai7124 (39X)	97.19%	array detection with the re-sequencing results.
		SNP Chip	Three technical replicates for WO
	W0 vs W0	100%	Two biological replicates for WU
	TM-1 vs TM-1	99.99%	Two biological replicates for twi-t
		SSR	SNP Chip
Х	XXJ vs XXXJ mutai	nt	16.11%
XZ142 vs XZ142 mutant			19.04% Several mutants and their

XZ142 vs XZ142 mutant		19.04% S	everal mutants and their
7235 vs 7235 mutant	2.17% (Lu QX, 2004)	25.01% C	orresponding donors with similar
imim vs TM-1	1.28%(Wang C,2012)	21.00% g	enetic backgrounds
TM-1 vs SL1-7-1		26.82%	
TM-1 vs MD17		30.62%	
TM-1 vs N1		22.73%	
TM-1 vs n2		25.71%	

3. Potential utilization of the CottonSNP80K array

Fingerprint of varieties Genome-wide association studies (GWAS) **Genetic diversity analysis High-density genetic mapping** Quantitative trait loci (QTLs) mapping **Genomic selection (GS)** Molecular breeding by design

Genome-wide association studies for salt stress traits

Eight significant SNPs for three salt stress traits

288 *G. hirsutum* accessions 54,588 SNP polymorphic loci

10 salt-stress phenotyping traits •GR: germination rate ; GP: germination percentage •PH: Plant height; SDM: shoot dry matter; RDM: root dry matter; CC: chlorophyll content •MDA: malondialdehyde content; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase enzyme activity

D5: TM57102,TM57104; RCC A2: TM5633; RMDA D9: TM70162, TM70169, TM70170, TM70171; RMDA A12: TM43002; RGR 13

Mining candidate genes associated with salt stress traits

A total of 308 genes were annotated in these different regions, and 36 and 21 genes were annotated as response to stimulus 14 and stress, respectively.

Comparison for different source chips (63K vs 80K)

oompano			
Туре	CottonSNP63K	CottonSNP80K	
Number	63K	80K	
SNP loci	Intra: 45,104 Inter: 17,954	Intra: 82,259	
SNP loci origin	Intra: RNA-seq 25K; gDNA-seq 25K Inter: RNA-seq 15K; gDNA-seq 0.5K	Intra: re-seq 170K	
MAF	>5%: 66.8%; >10%: 55.8% >20%: 40.0%	>10%: 100%	
Subgenome belongings	unclear	clear	
Genome coverage	unclear	2.1K at least; 23.5K flanking SNPs average; even distribution	
Polymorphic rate	61.6%/1156 accessions	100%/300+ accessions	
Gene %	Int Higher SNP density with	n genome-wide distribution,	
Homoelogous/ paralogous regions	more accurate addressa cotton intraspecific poly	able loci, and higher upland ymorphism. 15	

Future application

- Genetic diversity analysis
- High-density genetic mapping
- Genome-wide association studies (GWAS)
- Quantitative trait loci (QTLs) mapping
- Genomic selection (GS)
- Fingerprint of varieties
- Molecular breeding by design

Acknowledgment

Research group in NAU

优秀创新团队 0-=年十一月 江苏省现代农业产业创新团队 耐盐碱棉花生物育种创新团队 江苏省农业委员会

二0一四年五月

- National Key R & D Program for **Crop Breeding**
- **National Key Technology Support Program of China**

NSFC

- **The Fundamental Research Funds by the Central Universities**
- The Priority Academic Program • **Development of Jiangsu Higher** Education Institutions
- **Jiangsu Collaborative Innovation** • **Center for Modern Crop Production project**

Thanks! 谢谢!