

Cotton genomics is providing rational ways for gene finding and genetic improvement

Xianlong Zhang

2018-5-29

National Key Laboratory Of Genetic Improvement

• The two cultivated tetraploid cotton species: *Gossypium hirsutum G. barbadense*

 Using Sea Island cotton (much better fiber quality) to improve Upland cotton (relatively low quality with high yield, covers 95% areas) is our strategy

Therefore we sequenced the genome of *G. barbadense*

The genome sequence of G. barbadense

Subgenome assignment using diploid data

Ungrouped scaffolds exhibit small sizes.

The anchored draft genome sequence

"Relay race" model of *CesAs* in allotetraploid cotton fiber development

CesA genes in Dt-subgenome contribute largely in the elongation stage, whereas At-subgenomic CesAs play a predominant role in secondary cell wall synthesis stage.

An example: gene from Gb is really able to improve fiber quality

GbEXPATR

The transgenic cotton has longer, finer and stronger fiber. And these traits can be perfectly repeated. *EXPRATR* changes cell wall properties and improves fiber quality by reducing the cellulose, increasing the callose.

OE Lines	Fiber lenghth	Micronaire	Fiber Strenght
YZ1	27.96 ± 0.22	5.23 ± 0.08	25.56 ± 0.37
138	27.50 ± 0.76	5.23 ± 0.07	25.52 ± 0.55
OE2	29.60 ± 0.57	5.14 ± 0.16	26.54±0.66
OE3	29.79±0.71	4.78±0.25	27.03 ± 0.90
OE4	30.11±0.86	4.61±0.17	27.01 ± 0.62

Li et al., Plant Biotechnol J, 2016

We also try to find good fiber genes in *G. hirsutum*: Selection signals and GWAS on fiber quality-related traits

93 domestication sweeps,1777 genes (549 in the At and 1228 in the Dt)

25 QTL hotspots associated with major agronomic traits, of which **19** in the Dt.

19 significant GWAS signals associated with fiber quality-related traits, of which **11** in the Dt subgenome.

We resequenced 285 accessions.

Asymmetric subgenome domestication for long white fiber

A comparison of fiber quality between wild and cultivated cotton

The effects of domestication on fiber length and color

What is the genetic basis underlying these changes?

Asymmetric subgenome domestication for long fiber trait

Down-regulation of ROS-related genes

High concentration of ROS in wild cotton fiber development will terminate fiber elongation and cause developmental transition to secondary cell wall synthesis.

Asymmetric subgenome domestication for white fiber trait

Selection signals at the Dof-binding site

Wild Cultivated

HUAZHONG AGRICULTURAL UNIVERSITY

Selection signal at the 4CL loci, the flavonoid metabolic pathway, may have driven the white fiber trait characteristic.

Candidate genes identified by GWAS

Trait	Chr		Candidate gene	Ortholog	Annotation
Fiber length	A06	GENE 1	Gh A06G1270	AT1G11300	protein serine/threonine kinases;protein kinases;ATP
			01_10001270		binding;sugar binding;kinases;carbohydrate binding
	D07	GENE 2	Gh_D07G2042	AT2G32720	cytochrome B5 isoform B
	D07	GENE 3	Gh_D07G2049	AT4G29040	regulatory particle AAA-ATPase 2A
	D09	GENE 4	Gh_D09G0300	AT3G01640	glucuronokinase G
Fiber uniformity	<u>D09</u>	GENE 5	Gh_D09G0301	AT5G14420	RING domain ligase2
	D09	GENE 6	Gh_D09G0302	AT5G14410	
	D03	GENE 7	Gh_D03G0457	AT4G39330	cinnamyl alcohol dehydrogenase 9
Micronaire	<u>D10</u>	GENE 8	Gh_D10G0649	AT3G16170	AMP-dependent synthetase and ligase family protein
value	<u>D10</u>	GENE 9	Gh_D10G0652	AT1G79820	Major facilitator superfamily protein
	D10	GENE 10	Gh_D10G1264	AT3G07490	ARF-GAP domain 11
	A07	GENE 11	Gh_A07G1543	AT2G32970	unknown protein
Fiber elongation	D04	GENE 12	CGh_D04G1558	AT1G50010	tubulin alpha-2 chain
rate	D04	GENE 13	Gh_D04G1562	AT1G10200	GATA type zinc finger transcription factor family protein
	D04	GENE 14	- Gh_D04G1574	AT2G14900	Gibberellin-regulated family protein
	A12	GENE 15	Gh_A12G0349	AT4G38620	myb domain protein 4
	A12	GENE 16	Gh_A12G0351	AT2G16700	actin depolymerizing factor 5
	A01	GENE 17	Gh_A01G0543	AT4G27270	Quinone reductase family protein
	A06	GENE 18	Gh_A06G0802	AT4G33010	glycine decarboxylase P-protein 1
Short fiber rate	A11	GENE 19	Gh_A11G1722	AT4G36750	Quinone reductase family protein
	A12	GENE 20	Gh_A12G0249	AT3G18820	RAB GTPase homolog G3F
	A12	GENE 21	Gh_A12G0257	AT2G21660	cold, circadian rhythm, and rna binding 2
	D08	GENE 22	CGh_D08G0920	AT4G25770	alpha/beta-Hydrolases superfamily protein
	D11	GENE 23	Gh_D11G3117	AT5G15750	Alpha-L RNA-binding motif/Ribosomal protein S4 family protein

The expression profiles of genes selected to CRISPR/Cas9

Flavonoid metabolism

Cytoskeleton

Transcription factors

Cell wall related genes

Total: >100 genes for CRISPR/Cas9

Comparison of the sequenced cotton genomes

Category	G. raimondii	G. raimondii	G. arboreum	G. hirsutum	G. hirsutum	G. barbadense G. barbadense		
	(D5) (BGI)	(D5) (JGI)	(A2) (BGI)	(AD1) (BGI)	(AD1) (NBI)	(AD2) (HAU)	(AD2) (CAS)	
Assembly strategy	WGS	WGS+BAC	WGS+BAC	WGS+BAC	WGS+BAC	WGS	WGS+BAC	
Total assembly size, Mb	775.2	761.4	1,694	2,173	2546	2573	2,171	
Total scaffold number	4,715	1,084	7,914	8,591	40,407	29,751	6,772	
scaffold N50, Mb	2.3	18.8	0.66	0.76	1.6	0.26	0.5	
Anchored and oriented scaffolds, Mb	406.3	7 48. 7	1,532	1,923	1,934	1,997	1,950	
Percentage of repeat sequences	57.00%	61.00%	68.50%	67.20%	64.80%	69.10%	63.20%	
Number of protein-coding genes	40,976	37,505	40,134	76,943	70,478	80,876	77,526	

Low continuity of tetraploid cotton genome assembly

Deficiencies of next-generation sequencing (NGS)

- 1. The NGS-based approach leaves assembly discontinuity and many assembly gaps in scaffolds;
- 2. The NGS-based approach fails to assemble pericentromeric regions because of sequencing bias;
- 3. The mixed assembly between subgenomes;
- 4. Genome is fragmentary with scaffold anchoring errors.

Call for reference-grade tetraploid genome sequence

PacBio/Nanopore sequencing Long reads and unbiased sequencing

BioNano optical maps

Construct scaffolds by using contigs, Correct assembly errors Estimate gaps

Hi-C technique

Construct super-scaffolds and chromosome-scale assembly

Genome-enabled gene transfer from G. barbadense to G. hirsutum

Interspecies introgression during cotton breeding

Introgression between *G. hirsutum* and *G. barbadense* varies across the Atgenome.

	Chr1	Chr2	Chr3	Chr4	Chr5	Chr6	Chr7	Chr8	Chr9	Chr10	Chr11	Chr12	Chr13
		1	<u> </u>		<u> </u>	1		1	1 1		1	1	1
Acala_Maxxa.gff	فمعاد والاست	ليأتصقنك	بالعبا لحفات	-ull	h.L. m. m.	ما يە يە يە	ان البلية		hele a de sa	ياسب م	and the second second	. It has	ليديد عيداعت
Coker-312.gff	متعليك جاتبت		ير اسر الملاطنة		In Land and	يىلىپ يە	ل الله		the set of	. ا است. ام			سيانين الأب
Deltapine-5690.gff		ليطبين					ليست	. I.b.a.b. Lb	ale sa				يت يستعد العن
Fibermax-832.gff	ويتقدلك والسوار		ير اسر الملاقات		IL LANGE MARK	يرابين الم	أريابهما		يعترجه فريانه	. ا. با بير _ ام			يستلحقن أغب
MS240.gff	مريق على حاسبات	Jahren	برا سرائيا للبانية		Indexes and	L	أيتياليسال		المارية الريامة	بالسف			يتنبأه والأرباني
PD-1.gff	متعامل والمتعاد	يتأسفها	والمراد المالية		Indune and	يعامد م	. اللحال		يستعاد بالبا				يت السالات الات
Sealand-542.gff	ويعقبه والمراد	ليطبطنك	ب ا س ا جاهیات		In Land and	يالم عالم	لتست		يعجبه فريانه	ude as addressed a	يتبر جمالم		يتساعدوان القت
Stoneville-474.gff	متعاميه والتسو		ير المراجعة المراجع		In Land and	مليد ب	لتنشله		يعرجه لا يليه	والمرواعات والم	addina in	- le u - e	يتبي التجافي القت
SureGrow-747.gff	مساجيا عاد	ي المحملية ال	ير المراجعة العمارية		In the second second	ياليت في	الم الأسال		يعرجه فريانه	minar halo a ta	Ale in		يت بانتظر بالقت
Tamcot_sphinx.gff		Indexed.	ب اس المعادة		In Low Low	يرايد	السيال		يعرجه والمعامة		يريد جواليت		يتبينا تقات أعيار
TM1.gff		المحما	ي المد المقسية	dt.	In house and	يا ي ما ي	أتدليتهم		يعرجه فرجلته				
Deltapine-340.gff	ي من ال	يداد والعوار	المراجع				ا باير حد با		الدية الإينا	And them		and the state	and the second
Phytogen-76.gff			هده الا				La de la	Laure and La				de la des	i and a h
Giza-7.gff	- Hu - An		li talahan.				L	al a barren	المتحافية الماس	Acres .		المراجعة المراجعة	, dense ette

Page et al., PloS Genetics, 2016

Reference-scale genome sequence should be provided for more efficient genome-based breeding

1. Directly explore genomic differences between two representative species.

PAV region Functional annotation of genome variants Sequenced region Predict gap region Stop lost 3481 Stop gained Start lost 50367 52428 Splice donor variant Splice_acceptor_variant 5136 4308 Frameshift_variant 2000 3000 4000 1000 5000 6000 ZS97 affected gene number MH63 affected gene number ZS97 MH63 Zhang et al, PNAS, 2016

The presence/absence variations in two rice species

Reference-scale genome sequence should be provided for more efficient genome-based breeding

2. Identification of casual variants in introgression lines by QTL mapping and GWAS

Reference-scale genome sequence should be provided for more efficient genome-based breeding

3. Accurate genome sequences facilitate functional gene discovery

Standard draft genome sequences are only suitable for establishing a relatively comprehensive gene catalog.

Inferences about lineage-specific features can only be achieved with high-quality complete sequences.

Acknowledgement

Dr. Lili Tu Dr. DaojunYuan Dr. Maojun Wang

Prof. Keith Lindsey University of Durha Funding sources: NSFC Ministry of Sci & Tech Ministry of Agriculture Ministry of Education

Thank you!