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Garfield County, TX

Sustainable agricultural production is
threatened by increasingly variable weather
patterns and diminishing fresh water
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Drought of 2011, 2.2 billion dollar economic loss in cotton production
55% of planted acres abandoned

Global data supports same pattern in other cotton producing regions
Challenge: Developing drought and heat stress tolerant varieties




Plant breeding as a YiELD =V KT (i
solution

Photo-Protection . Transpiration Efficiency

Leaf morphology WUE of leaf photosynthesis

. “ o * wax/pubescence * low 12/13C discrimination
The drought “phenotype” is a whole « posture/rolling

plant response Pigments

* A phenotype entirely reliant on the o chla:b
environment in which it is expressed * carotenoids

* No “single gene” solution
* Improvement must be at the whole
plant level

e Understand the underlying biology
and genetics of stress-responsive
traits

Water Uptake (WU)

Rapid ground cover

* protects soil moisture
Access to water by roots

¢ cool canopy

Partitioning (HI)

Partitioning to stem

* Integrate physiology and genetics to carbohydrates
increase genetic gain and more
efficiently develop stress resilient
cultivars

Harvest index
¢ Rht alleles
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Adapted from: Physiological Breeding: Interdisciplinary Approaches to Improve Crop Production, Reynolds et al. (2011)
Cotton plant image from: http://www.soilcropandmore.info/crops/Cottoninformation/insect/B-933/b-933.htm




Genetics of abiotic
stress tolerance

Can we collect meaningful, physiologically
relevant data under field conditions?

Is there exploitable variation for stress-
adaptive traits in cotton?

What is the temporal basis of QTL
expression patterns in cotton?

Can physiological traits predict agronomic
traits?

TRENDS in Plant Science

Adapted from Gutierrez and Maere, (2014) Trends in Plant Science 19:5



High-Throughput Phenotyping (HTP) is essential

* Evaluate plants under field conditions (imperative for drought research)
* Measure throughout trait development

 Utilize larger populations
* Lower cost and minimized subjectivity
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HTP Experimental
Design

* Maricopa Agricultural Center: clear
skies, limited rain, high temperatures

* Managed Stress: Precision irrigation
provided consistent drought and heat
conditions

* Two Irrigation Regimes:
e Water-limited (Dry, 50% daily ET)
* Well-watered (Wet, 100% daily ET)

* Drip irrigation, FAO-56 Crop ET
model for wet and dry regimes

e Subsurface drip irrigation
* |nitiated at flowering
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Red line at 32°C is the temperature at which yields are significantly impacted



HTP Experimental Design Phenotyped Traits

* TM-1xNM24016 mapping population * HTP Canopy
* 95 recombinant inbred lines (RILs) * Temperature, NDVI, height

« Community resource Physiological
 TM-1is the reference genome « ABA, CID, Chlorophyll

* Field design, arranged as (0,1) alpha lattice Agronomic
* 9 meter long single row plots e Lint yield, boll size

* Two replications per irrigation regime _ _
Fiber quality

110 m * Length, strength, fineness

Seed ionomics




HTP: Proximal sensors,
platform, and vehicle

Active, multispectral crop canopy sensor
e Canopy reflectance

Infrared thermometer
» Canopy temperature

Ultrasonic transducer
e Canopy height

Data Loggers
* Onboard data storage

GPS-RTK

» Geolocating each collected data
point with position and time stamp

Andrade-Sanchez et al. 2014 Functional Plant Biology

verage speed of 2.82 km/h
1 data point/meter (1 Hz)




Longitudinal assessment of phenotypes over time

* Canopy traits
e Canopy temperature — plant-water relations
 NDVI — used to quantify change in canopy architecture as a function of wilting
* Canopy height & LAl —whole plant response

Pinhead aysSiA - eeks, A Defoliation/
Square BIoC BI6 Leaf Drop




HTP Geoprocessed Canopy Temperature Data
* Each circle represents a canopy temperature data point, multiple measurements per plot
e Data from August 12, 2010 at 1 pm (MST)
* Well-watered (Wet) is approximately 3-10°C cooler than water-limited (Dry)

L e

Wet Rep 2: 28-36°C

Dry Rep 2: 33-49°C

Wet Rep 1: 29-36°C

Dry Rep 1: 31-46°C



Transgressive variation for canopy temperature (°C)

Wet and Dry Plots at 1 pm on Day 222, 2012
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Mean = 35.7°C Mean = 45.2°C

Sb=1.9 SD=2.3
H? =0.83 H? =0.90
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Differential time-by-
treatment interactions for
canopy traits

Wet and Dry Plots at1
pm on Day 222, 2012

CT = Canopy temperature

NDVI = Normalized difference
vegetation index

LAl = Leaf area index

CH = Canopy height
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Dynamic response of canopy temperature to

irrigation regime at multiple times and days

Fiber development

& elongation

Boll development
& fill

Flowering/peak
bloom
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Phenotypic variation for canopy temperature at each time of day that data

were collected under two irrigation treatments from 19 July — 14 Sept. 2012




Canopy temperature measurements are more highly
correlated within a plant growth stage

053 042 034
047  0.38

Flowering/peak Boll development Fiber development
bloom & fill & elongation

Pearson’s correlations for mean canopy temperature under two irrigation treatments from 7 July — 8 Sept. 2011



Distinct temporal patterns of genetic effects control variation in canopy

temperature
_ Abscisic acid
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Canopy temperature at flowering/peak bloom is most predictive

of lint yield

Flowering/peak bloom
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High prediction
accuracies of lint yield

using canopy
temperature data from
flowering/peak bloom
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Understanding environmental effects:
Phenotype = Genotype + Environment + GenotypexEnvironment

* Current phenotyping efforts only tell half the story (the top half)

* In-field root phenotyping in its infancy
* How do plants interact with their soil environment?
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lonomics: another

https://sciencenotes.org/kids-periodic-table/
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* Soil composition * Green boxes = essential elements for plant growth and health

* Plant morphology

* Purple boxes = nonessential and trace elements
* Development stage of plant

Provide information about overall
health and function of the plant




SOll enVirOnment iS Interpolated Soil Mg Levels

highly heterogeneous

- 8.60

- 8.55

Magnesium concentration of soil
where HTP experiments were
carried out, samples taken from 5
depths

- 8.50

- 8.45

Red & black circles = sampling 8.40

locations

North/South

8.35

Yellow = high magnesium content .30

Blue = low magnesium content
6.25

Soil magnesium concentrations
were significantly correlated with
seed magnesium concentrations East/West

8.20




Correlation Values

Strength Direction
0.2 B Positive
0.4 :
0.6 Negative

lonome is highly
interrelated
genotypically

Genotypic Correlations Wet

Genotypic Correlations Dry




The ionome predicts abiotic stress

Strong Year Effect Prediction Accuracies
- KNN 0.60
ke,
© 2 -
§ Logistic 0.92
IS
X o i
0 LDA 0.93
I
AN
O | . SVM 0.94
0 0.2 0.4 0.6 0.8 1

PC 1 - 36% of variation

Prediction of irrigation treatment achieved accuracy of 94%




Summary of Cotton HTP Experiments

e Field-based HTP

* Novel platform
* Dynamic traits
* Temporal QTL

* Yield prediction e ootopears
- 5to 7 Bolls " Defollants, dessicants, )0
. = % signalrootste < 7 { and boll openers
* lonomics HTP z i AT opieduenstor £l T\
2 £ ™~ bl P 75N thebollsare open. 7 240

* Incorporation of environment
* Interrelated system
* Predictive of stress
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