G. longicalyx project introgressing reniform nematode resistance into cotton

Support

Cotton Incorporated Texas A&M University USDA-ARS (Cotton Pathology Research Unit)

Scientists and assignments

Hybrid development and breeding......Al Bell

Cytogenetics & molecular markers......David Stelly

Nilesh Dighe

Monica Menz

Resistance phenotyping......Forest Robinson

Objective: Introgress resistance from *G. longicalyx* to produce package of germplasm + markers giving industry incentive and means to develop cultivars that yield well and reduce populations in infested fields

Strategy: Cross *G. hirsutum* with *G. longicalyx* hybrids and select for resistance in progeny from repeated backcrosses onto *G. hirsutum* up to BC_6 or BC_7 , monitoring progeny cytogenetically and morphologically, then obtain homozygous resistant progeny that yield and lack deleterious recessive exotic genes from hybrids. Develop markers during introgression beginning with AFLP progressing to SSR or other transportable markers.

Benchmarks and Pitfalls: Introgression into *G. hirsutum* chromosomes, irreversible gene block (e.g. introgression into A genome inversions), low marker density or homology near resistance gene(s), differential expression of multiple resistance genes upon recombination within alien segment.

Triple species hybrids (A.A. Bell, 1980's) used by USDA-ARS to introgress reniform nematode resistance from *G. longicalyx* into upland cotton

 HLA hybrid (Bell's strategy: substitute F for A) (G. hirsutum x G. longicalyx)² x G. armourianum Genomes: (AD x F) → (FAD)² x D → (FADD)

 2. HHL hybrid (Bell's strategy: substitute F for D) (G. hirsutum x G. herbaceum)² x G. longicalyx
Genomes: (AD x A) → (AAD)² x F → (AADF)

[Note: G. hirustum (AADD) 'TM-1' (Deltapine 14) × G. longicalyx (FF) hexaploid created by Dr. Meta Brown.]

HHL hybrid – Red petal spots from G. herbaceum

HLA hybrid – Pink staminal filaments from G. armourianum

Stem pubescence

BC1 F1

G. hirsutum

Al Bell with hybrid (Bell on right)

Progeny status 17 months ago (January 2004)

Example of resistance assay data set - % of susceptible control

Code	Family	Parent	Generation	1	2	3	4	5	6	7	8	9	10
95	BC1 77	BC3 1-6 self	BC3S1	4	4	63	51	50	3	3	2	42	93
			BC3S1	37	37	4	4	1	84	60	1	1	45
			BC3S1	6	5	61	54	1	1	109	6	121	3
			BC3S1	3	114	9	2	3	91	66	6	3	96
			BC3S1	120	69	2	46	123					
96	BC1 84	BC3 3-15 self	BC3S1	71	28	1	17	0	0	0	21	0	0
			BC3S1	2	3	38	0	35	1	10	1	0	22
			BC3S1	1	7	2	55	0	0	3	14	1	0
			BC3S1	0	1	0	1	0	0	1	1	0	67
			BC3S1	1	9	0	1	1					
97	BC1 84	BC3 3-24 self	BC3S1	1	1	0	0	94	0	16	5	1	1
			BC3S1	3	2	1	2	2	0	20	1	3	2
			BC3S1	1	1	0	1	0	0	1	1	1	0
98	BC1 2	BC3 1-9 BC*	BC4	4	0	92	69	5	57	87	136	1	78
99	BC1 77	BC4 47-10 BC	BC5	77	115	108	8	21	3	89	123	2	1
100	BC1 77	BC3 4-10 BC	BC4	2	224	9	6	115	78	1	86	99	54
101	BC1 83	BC3 52-7 BC	BC4	4	2	118	1	72	39	0	3	2	134
102	BC1 83	BC2 5-2 BC	BC2	3	77	90	45	149	66	91	2	6	85
103	BC1 85	BC3 11-10 BC	BC4	5	1	1	66	76	73	105	80	29	3
104	BC1 103	BC3 33-3 BC	BC4	128	61	88	3	129	3	54	2	73	4
105	BC1 103	BC2 15-21 BC	BC2	144	73	5	0	88	78	2	4	1	113
106	BC1 122	BC3 19-5 BC	BC4	2	1	37	3	5	3	5	3	3	2
107	BC1 132	BC3 56-8 BC	BC4	127	5	1	38	4	43	79	123	6	0
108	DP-16		Sus. Ck.	157	108	116	116	119	54	105	113	119	98
109	GB-713		Res. Ck.	2	6	3	1	2	14	8	2	5	1

Resistant BC_4 plant with bolls

Young resistant BC₆ plant with squares

Resistant BC₄ plant with bolls

Young resistant BC₆ plant with squares