Molecular Markers and Mapping of Root-knot Nematode Resistance in Cotton

Phil Roberts & Congli (Lily) Wang
Dept. Nematology, UC Riverside

Mauricio Ulloa
USDA-ARS, WICS, Res Unit, Shafter
Outline

1. Background

2. Markers & Mapping of RKN R genes in *G. hirsutum*
 Acala NemX and Auburn 634 sources

3. Transgressive segregation for enhanced resistance

4. Mapping TS genes in *G. barbadense*

5. Search for gene origins in *Gossypium*
Root-knot Nematodes are one of the Most Economically Important Pests in Cotton

- Occur in every cotton-producing area in United States.
Parental Reaction to Root-knot Nematode

NemX Pima S-7 SJ-2
Fusarium wilt of Cotton

Vascular disease caused by the soilborne Fungus Pathogen: *Fusarium oxysporum* f. s.p. *vasinfectum* (FOV)
FOV R4 + RKN

NemX
F$_{2:7}$ RIL Galling Index

The graph shows the galling index plotted against plant number. The data points are labeled as SJ-2 and NemX. The graph indicates a trend where the galling index increases with plant number.
AFLP marker and RIL F_{2:7} (NemX x SJ-2)

M S R S S S R R R R RRRR R R R R S S S S S S S S S S S S S S S S R S S S S S S S S S S M

4/128 EcoR1/Mse1

P1P2
CAPS marker (NlaIII) RIL7 (NemX x SJ-2)
Cotton Linkage map

284 primers
SSR: CIR 316

Marker

SJ-2
NemX
F₁ (NXS)

F₂

NemX x F₁

SJ-2 x F₁
Localization of NemX R gene

Published data:
- Nguyen et al. (2004) TAG
- Rong et al. (2004) Genetics
- http://cottondb.tamu.edu
- Frelichowski, Ulloa (2006) MGG
- Unpubl. data Mauricio Ulloa

F₂ (Pima S-7 x NemX)

Chr.11

BNL1231
BNL1066
CIR003
BNL836a
BNL3649
BNL1408
BNL3592
BNL4094
BNL1681a

CIR316a*

rkn1
Other RKN resistance mapping studies in Auburn 634 sources

1. Shen, Davis, May, Chee et al. TAG, 2006
 - 2 QTL Chr. 11 and Chr. 7 (F₂ with M120)

 - 2 SSRs, Chr. 11 and 14 (NIL from A634)

 - Major gene in A634 (Mi2) on Chr. 11 (F₂ with A634)
Localization of A634 R gene

Nui et al Crop Sci 2007

Chr.11

ST 474 x A 634 F₂
Cotton germplasm: Marker Screening

| Marker | PimaS-2 | PimaS-3 | PimaS-4 | PimaS-7 | Coker100 | Coker307-6 | Wild Mexico | Cleveilt 6 | Auburn 623 | Auburn 634 | Auburn56 | M-75 | M-78 | M-120 | M-188 | M-315 | TX 110 | Acala442 | Tanguis | LARN 4-4 | LA RN 1032 | NemX | SJ-2 | Marker |
|----------------|---------|---------|---------|---------|----------|------------|-------------|------------|------------|------------|-----------|--------|------|-------|-------|-------|-------|--------|---------|--------|---------|----------|------|------|--------|

SSR: CIR 316
Root-knot Nematode Resistance Sources

Wild Mexico
 Jack Jones

Clevevilt 6

Auburn 623 X Auburn 56 X Tanguis

Auburn 634

M -lines
 M-75, M-78, M-120, M188, M-315

AXTE, FBCX-2

LA RN 4-4
LA RN 1032

Acala NemX
<table>
<thead>
<tr>
<th>F<sub>2</sub></th>
<th>SJ-2</th>
<th>NemX</th>
<th>Pima S-7</th>
<th>Cleve wilt 6</th>
<th>Auburn 634</th>
<th>Auburn 623</th>
<th>Tanguis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleve wilt 6</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>WildMexico</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auburn 56</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Auburn 634</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auburn 623</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-75</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>M7-78</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-120</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-188</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M315</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA RN 4-4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA RN 1032</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pima S-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Pima S-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Pima S-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
F₁ and Parent Resistance phenotypes for NemX, Pima S-7, SJ-2
F₂ (Pima S-7 x NemX) 179 plants

![Bar chart showing the number of plants with different egg counts per gram root for NemX and Pima S-7.]
Galling response of plants from 64 F$_{2:3}$ families of Pima S-7 x NemX

Extreme phenotypes of transgressive segregants outside parent range
BC$_1$F$_1$ (NemX x F$_1$)

(90 plants)

BC$_1$F$_1$ (Pima S-7 x F$_1$)

(114 plants)
Testcross NemX x F₁ (PimaS-7 x SJ-2)

All plants Het for \textit{rkn1}; \frac{1}{2} have PS7 factor

\[
R^2 = 0.6316
\]
Marker screening P x N with SSR for TS gene RKN2 from Pima S-7

RKN2 SSR marker

<table>
<thead>
<tr>
<th>Marker</th>
<th>SJ-2</th>
<th>NemX (N)</th>
<th>Pima S-7 (P)</th>
<th>F₁ (N×SJ-2)</th>
<th>F₁ (P×SJ-2)</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>S¹</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ-2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>SJ-2</td>
</tr>
<tr>
<td>NemX (N)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NemX (N)</td>
</tr>
<tr>
<td>Pima S-7 (P)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Pima S-7 (P)</td>
</tr>
<tr>
<td>F₁ (N×SJ-2)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>F₁ (N×SJ-2)</td>
</tr>
<tr>
<td>F₁ (P×SJ-2)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>F₁ (P×SJ-2)</td>
</tr>
<tr>
<td>R₁</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R₁</td>
</tr>
<tr>
<td>R₂</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R₂</td>
</tr>
<tr>
<td>R₃</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R₃</td>
</tr>
<tr>
<td>R₄</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R₄</td>
</tr>
<tr>
<td>S¹</td>
<td>S</td>
<td>S¹</td>
</tr>
<tr>
<td>S₂</td>
<td>S</td>
<td>S₂</td>
</tr>
<tr>
<td>S₃</td>
<td>S</td>
<td>S₃</td>
</tr>
<tr>
<td>S₄</td>
<td>S</td>
<td>S₄</td>
</tr>
<tr>
<td>S₅</td>
<td>S</td>
<td>S₅</td>
</tr>
<tr>
<td>S₆</td>
<td>S</td>
<td>S₆</td>
</tr>
</tbody>
</table>

Markers 167 and 165 are highlighted.
Linkage groups and Joint-group representing Chr 11 showing the distance and position relationships between SSR markers and the nematode resistance genes $rkn1^*$ and $RKN2^{**}$.

Pop 1
Chromosome 11
F2 interspecific
(Pima S-7 x NemX) LOD = 4.0

Pop 2
Chromosome 11
F2 intraspecific
(NemX x SJ-2)
LOD = 6.0

Joint-LG
Chromosome 11
Cotton marker/R gene origin
Screening A and D genome donors

RKN2 SSR marker – MUCS-088
Current working map of Chr 11, with BAC-end derived SSRs in the CIR316/BNL1231 region.
Summary

• Chromosome 11 important RKN R gene region: \textit{rkn1}, A634 source, \textit{RKN2}

• Excellent markers linked to \textit{rkn1} and \textit{RKN2} for MAS (SSR, CAPs, SNP)

• Transgressive segregation for enhanced resistance phenotypes

• Marker screening of diverse germplasm - test for unique R genes and origins

• Saturation mapping tied to physical mapping
Acknowledgements

UCR
Bill Matthews
Teresa Mullens
Kathie Carter

Mauricio Ulloa (USDA, Shafter, CA)
Jinfa Zhang (NMSU, Las Cruces)
Bob Nichols (Cotton Inc)
Jim Starr (Texas A&M)

Richard Davis and Peng Chee
(U. Georgia)
Johnnie Jenkins (USDA, MS)

Funding: Cotton Incorporated

UC Discovery Grant Program
Linkage groups representing Chr 11 showing the distance and position relationships between SSR markers and the nematode resistance genes

- Wang et al: Rkn1-NemX
- Shen et al: M120-Au 634
- Nui et al: Au 634