Reniform Resistance from *G.* barbadense 'TX110'

J. L. Starr, C. Wayne Smith, E. Zhou, K. Ripple, E. Morgan

Texas Agricultural Experiment Station

Primary Objectives

- Develop an interspecific population suitable for mapping loci for resistance *M. incognita* and *R. reniformis*
 - Original RFLP map of cotton by was based on G.
 hirsutum x G. barbadense (Reinish et al. 1994)
 - G. hirsutum has $(AD)_1$ genome whereas G. barbadense has $(AD)_2$ genome
- Develop *G. hirsutum* genotypes with resistance to *R. reniformis* (E. Zhou)
 - G. hirsutum 'M315' used as Root-knot resistant parent (Shepherd et al., 1988)
 - G. barbadense 'Tx110' used as Reniform resistant parent (Yik & Birchfield, 1984)

Resistance in F1 generation to Root-knot and Reniform nematodes

Resistant Genotypes to be Developed from Two Breeding Strategies – Pedigree Program

K. Ripple advanced material to the F₄ generation

Test 1 – means of each F4:5 family not different from mean of Tx110

Test 2 – means of $F_{4:5}$ families not different from M315, but resistant individuals selected from each family

We expected to begin selection for agronomic traits in the F_5 and F_6 generations but unfortunately low fertility in F_5 generation is a real problem!

Resistant individuals were pollinated with pollen from M315 to create a new backcross population

This BC1F1 population is currently being screened for RN resistance and to produce a BC2F2 generation

Four RN-resistant F_6 lines are currently being grown in field plots to select for improved fertility

Backcross Program

Future Activities

- Complete development and screening of two BC₁F₂ populations
 – Create a BC₂ generation
- If improved fertility can be selected from the F₆ generation, then progeny again screened for RN resistance and agronomic traits