Genome sequencing of *Xanthomonas citri* pv. *malvacearum* and the PCRbased detection of the cotton bacterial pathogen

Shien Lu

Mississippi State University

April 6, 2016

Bacterial Blight of Cotton

Under side: Water soaked symptom

Upper side: Angular spots

Boll Rot of Cotton

(Photographed by Tom Allen)

Bacterial streaming

- The way to differentiate the symptoms from other spots

Bacterial Blight of Cotton

Pathogen:

Xanthomonas citri pv. malvacearum (Ah-You et al. 2009)

Hosts:

- Gossypium spp. = cotton (& relatives: okra, swamp hibiscus, etc.)
- *Thespesia lambas* = portia tree
- Ceiba pentandra = kapok tree

Distribution: worldwide (≈ 20 races)

```
Yield loss: 0.1-3.4% up to 50-70%
```

Taxonomy of Bacterial Blight Pathogen of Cotton

- Xanthomonas malvacearum (Smith 1901): Physiological and biochemical characteristics
- Xanthomonas campestris pv. malvacearum (Dye 1978): Physiological and biochemical characteristics, DNA-DNA hybridization, and host specificity
- Xanthomonas axonopodis pv. malvacearum (Vauterin et al. 1995): 16S rDNA, DNA-DNA hybridization
- Xanthomonas citri subsp. malvacearum (Schaad et al. 2006): DNA-DNA hybridization; re-PCR, Serology, ITS, SDS-PAGE etc.
- Xanthomonas citri pv. malvacearum (Ah-You et al. 2009): DNA-DNA hybridization, amplified fragment length polymorphism (AFLP), and multilocus sequence analysis (MLSA: 16S rDNA, gyrB, atpD, and dnaK)

The Genus Xanthomonas Dowson 1939

- Type species: Xanthomonas campestris
- Over 100 xanthomonads (species, subspecies and pathovars) have been recognized as distinct plant pathogens.
- Practically all-major groups of plants (at least 124 monocot and 268 dicot plant species) suffer from one or more diseases caused by this bacterium.
- Xanthomonas is a well-defined, homogeneous genus and the strains share a high degree of genetic similarity.

Genome Comparison of Two Xanthomonads

General features of the chromosomes		
	Хсс	Xac
Length (bp)	5,076,187	5,175,554
G+C content (%)	65.0	64.7
Protein-coding region (% chromosome size)	84.34	85.59
Protein-coding genes		
With assigned function	2,708	2,710
Conserved hypothetical	1,276	1,272
Hypothetical	198	331
Total	4,182	4,313
Transfer RNA	53	54
Ribosomal RNA operons	2	2
Plasmids	0	2
Insertion sequence elements (IS)	109	87

Xcc: Xanthomonas campestris pv. *campestris Xac: Xanthomonas axonopodis* pv. *citri*

(da Silva et al. Nature 2003)

Nucleotide alignment between Xac and Xcc.

(da Silva et al. Nature 2003)

Comparison of Xanthomonas Genomes

(Xanthomonad variable regions)

Current Methods for Detection of Xanthomonas citri pv. malvacearum

- Semi-selective culture medium (MSSXAN): Culturedependent isolation and further identification is required (Dezordi et al. 2010)
- Random amplified polymorphic DNA (RAPD) technique: Extract DNA and PCR amplification with ITS primers; low reproducibility (Umesha et al. 2010)
- Polymerase chain reaction-based detection: pthN based PCR amplification; the gene *pthN* is > 94% identical with all other sequenced members of the *avrlpth* gene family (Chakrabarty et al. 2005)

Sensitivity and Cross-Reactions of Antibody of *Ralstonia solanacearum* R3B2

Rs: *Ralstonia solanacearum;* Rp: *Ralstonia pickettii;* Re: *Ralstonia eutropha*; Bc: *Burkholderia cepacia*

(Denny et al., 2012)

Importance and Difficulty to Detect Xcm from Seed

Importance:

- Seed-borne pathogen (Verma 1986)
- Surviving in/on seed at least 22 months and on the lint for at least 4 months (Thaxton and EI-Zik, 2001)

Difficulty:

- Very low rate of bacterium-carrying seed: ≈0.1% (Verma 1986)
- Bacteria are not active (dormancy) in seed (Jones and Lennon 2010).
- Endophytic Xanthomonas spp. in cotton seed (Misaghi and Donndelinger 1990)

Real-Time Quantitative PCR

Fast-Cycling Kits for real-time PCR developed using 5 Primers Inc., MD, USA (very sensitive: one cell; and fast: ≈30 minutes)

Bacterial Strain MSCT1

Descriptions

Sequences producing significant alignments:

Description	Max score	Total score	Query cover	E value	Ident	Accession
Xanthomonas citri subsp. malvacearum strain DSM 3849 16S ribosomal RNA gene, partial sequence	2580	2580	100%	0.0	99%	<u>NR 117146.1</u>

Pathogenicity Tests

Xcm MSCT1

Sterile Distilled Water

Bacterial cells were infiltrated into plant tissue with needleless syringe (Day 6 after inoculation)

Vacuum System for Bacterial Inoculation

Pathogenicity Assays

Xcm MSCT1

Sterile Distilled Water

Bacterial cells were infiltrated into plant tissue with vacuum (20 "Hg for 15 seconds; Day 10 after inoculation)

Sequencing Project Information

MIGS ID	Property	Term
MIGS 31	Finishing quality	Draft
	r misning quanty	Illumina PCR free, Nextera Mate Pair
MIGS-28	Libraries used	(4 kb) (PacBio-not included)
MIGS 29	Sequencing platforms	Illumina Miseq (PE300)
MIGS 31.2	Fold coverage	PCR free (247.7x), Mate Pair (39.5x)
MICS 30	Assomblors	
141103 30	A996IIINIGI 2	ALLFAINJLU
MIGS 32	Gene prediction	Prodigal

Genome Statistics of Strain MSCT

Attribute	Value
Genome size (bp)	5,142,224
DNA coding (bp)	4,295,077
DNA G+C (bp)	3,244,657
DNA scaffolds	14
Total genes	4,307
Protein coding genes	4,247
RNA genes	60
Pseudo genes	1
Genes in internal clusters	NA
Genes with function prediction	3,355
Genes assigned to COGs	3,176
Genes with Pfam domains	3,544
Genes with signal peptides	611
Genes with transmembrane helices	966
CRISPR repeats	1

Average Nucleotide Identity of MSCT1 and Related Strains

			Xcm_GSPB1386_R18	Xcm_GSPB2388		Xcm_R18	Xcm_R20
	X_cassavae	X_oryzae_oryzae	Nicaragua	HVS Sudan	Xcm_MSCT	Burkina_Faso	Burkina_Faso
X_cassavae	NA	0.8735	0.8759	0.8685	0.8907	0.876	0.8768
X_oryzae_oryzae	0.8735	NA	0.9107	0.9019	0.9131	0.9053	0.9049
Xcm_GSPB1386_R18_Nicaragua	0.8759	0.9107	NA	0.9941	1	1	0.9988
Xcm_GSPB2388_HVS_Sudan	0.8685	0.9019	0.9941	NA	0.9904	0.9903	0.9937
Xcm_MSCT	0.8907	0.9131	1	0.9904	NA	1	0.9993
Xcm_R18_Burkina_Faso	0.876	0.9053	1	0.9903	1	NA	0.997
Xcm_R20_Burkina_Faso	0.8768	0.9049	0.9988	0.9937	0.9993	0.997	NA

Strain MSCT1 is more close to Race 18 based on calculation of average nucleotide identity of the genome sequences.

PCR Primer Selection

Bacterial Strains Used

Bacterium ^a	Isolate	Sources			
	number				
Xanthomonas citri pv. malvacearum MSCT1	MSCT1	This study			
Xanthomonas citri pv. malvacearum Race 1	Race 1	Tom Allen			
Xanthomonas citri pv. malvacearum Race 2	Race 2	Tom Allen			
Xanthomonas citri pv. malvacearum Race 3	Race 3	Tom Allen			
Xanthomonas citri pv. malvacearum Race 12	Race 12	Tom Allen			
Xanthomonas citri pv. malvacearum Race 18	Race 18	Tom Allen			
Xanthomonas citri pv. citri 306	XAC306	Dennis Gross			
Xanthomonas campestris pv. vesicatoria 85	XCV85	Dennis Gross			
Xanthomonas campestris pv. campestris ATCC 33913	XCC33913	Dennis Gross			
^a Strain MSCT1 was a local strain isolated from cotton field in Washington County,					
Mississippi, during 2011.					

NSCTI OL ALI Racel Raced Raced Raced Racell Racello	
	primer2
	primer8
	primer13
	primer14
	primer18
	primer24
	primer40
	primer46
	primer50

PCR primer candidates for pathogen detection. **Bacterial strains** of the blight pathogen: MSCT1, **OL-A** (local isolate), YL-1 (local isolate), Races 1, 2, 3, 12, and 18.

Real-time PCR results of the SYRB method using different amounts of bacterial genomic DNA

Melting curve of the SYBR PCR products to verify primer specificity

TaqMan qPCR standard curve generated using genomic DNA of MSCT1. qPCR efficiencies were 100-104%.

Sensitivity of the qPCR detection of Xcm from Plant Materials

- Bacterial cells were added to fresh leaves and seed samples;
- Total DNA was extracted from the samples, respectively;
- TaqMan qPCR was conducted;
- The detection limit is 10² cells from 1 g fresh leaves and 37 cells from 1g seeds;
- No PCR amplicon was observed from the negative control (not inoculated).

Research Summary

- 1) Nearly-complete genome sequence of the cotton bacterial blight pathogen *Xanthomonas citri* pv. *malvacearum* is available.
- 2) The local strain sequenced is Race 18.
- 3) A TaqMan qPCR system has been developed for rapid and accurate detection of Xcm.
- 4) The genome sequence and detection system have many applications:
 - Pathogen identification
 - Genetic variation
 - Seed quality control
 - Disease development and epidemiology
 - Host range study

Acknowledgements

Dr. Tom Allen (DREC) Dr. Daniel Peterson (IGBB)

Dr. Xiaoqiang Wang (BCH-EPP; SDAU) Mr. Kurt Showmaker (IGBB) Dr. Peng Deng (BCH-EPP) Ms. Lucy Wang (IGBB) Ms. Sonya Baird (BCH-EPP) Dr. Chuan Hsu (IGBB) Dr. Nian Wang (U. of FL) Dr. Jan Leach (Colorado State) Dr. Zhaohui Chu (SDAU)

Dr. Robert Nichols (Cotton Inc.)

