Development of Genomic Tools for RKN Resistance Breeding in Cotton

Dr. Hongbin Zhang

Department of Soil & Crop Sciences and Institute for Plant Genomics & Biotechnology Texas A&M University, College Station, Texas

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

Deltapine 16

Auburn 623

Pedigree of the cotton highly root-knot resistant (RNR) Auburn lines

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

Mapping populations for RKN resistance

1. G. hirsutum x G. hirsutum

Auburn 623 x Deltapine 16 and reciprocal cross: > 10,000 F₂ Wild Mexican Jack Jones x Deltapine 16: > 5,000 F₂

2. G. barbadense x G. hirsutum

Pima S6 x Auburn 623 and reciprocal cross: > 10,000 F_2 Pima S6 x Auburn 623 RILs: 202 F_4 RILs

Segregation of the Auburn 623 x Deltapine 16 population

Segregation of the Pima S6 x Auburn 623 population

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

The Pedigree of the cotton highly root-knot resistant (RNR) Auburn lines

PCR Analysis of the Five Pairs of NILs of RKN Resistance with Oligo Primers

- A total of 700 oligo primers were screened
- Six oligo primers were identified to give polymorphic bands between the RKN resistance lines and the RKN susceptible lines

PCR analysis of the RKNR NILs with oligo primers

Screening the plants having RKNR index < 1.0 and randomly selected from the Pima S6 x Auburn 623 F₂ population with primer 11

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

	lass/gene	Interaction (Host/pathogen)	Predicted protein structure	Complex locus ^a	Introgressed from wild species	Reference
1 L		Flax/Melampsora lini	TIR-NBS-LRR	No	No	(81)
	M	Flax/Melampsora lini	TIR-NBS-LRR	Yes	No	(2)
	N	Tobacco/TMV	TIR-NBS-LRR	Yes	Yes	(154)
	P	Flax/Melampsora lini	TIR-NBS-LRR	Yes	No	(35)
	RPP1	Arabidopsis/Peronospora	TIR-NBS-LRR	Yes	No	(14)
	RPP5	Arabidopsis/Peronospora	TIR-NBS-LRR	Yes	No	(107)
	RPS4	Arabidopsis/Pseudomonas	TIR-NBS-LRR	No	No	(46)
	Bs2	Pepper/Xanthomonas	NBS-LRR	Yes	Yes	(136)
	Dm3	Lettuce/Bremia	NBS-LRR	Yes	No	(96)
	Gpa2/Rx1	Potato/Globodera Potato/PVX (RxI)	NBS-LRR	Yes	Yes	(144) (5)
	12	Tomato/Fusarium	NBS-LRR	Yes	Yes	(104, 122)
	Mi	Tomato/Meloidogyne/	NBS-LRR	Yes	Yes	(99)
	5,000 M	Macrosiphum	NBS-LRR	Yes	Yes	(117, 146)
	Mla	Barley/Blumeria	NBS-LRR	Yes	No	(162)
	Pib	Rice/Magnaporthe	NBS-LRR	Yes	No	(148)
	Pi-ta	Rice/Magnaporthe	NBS-LRR	No	No	(18)
	Prf ^b	Tomato/Pseudomonus	NBS-LRR	Yes	Yes	(118)
	Rp1	Maize/Puccinia	NBS-LRR	Yes	No	(25)
	RPM1	Arabidopsis/Pseudomonas	NBS-LRR	No	No	(48)
ę.	RPP8/HRT	Arabidopsis/Peronospora Arabidopsis/TCV (HRT)	NBS-LRR	Yes	No	(89) (27)
	RPP13	Arabidopsis/Peronospora	NBS-LRR	No	No	(11)
	RPS2	Arabidopsis/Pseudomonas	NBS-LRR	No	No	(9, 100)
	RPS5	Arabidopsis/Pseudomonas	NBS-LRR	No	No	(149)
	Rx2	Potato/PVX	NBS-LRR	Yes	Yes	(5)
	Sw-5	Tomato/Tospovirus	NBS-LRR	Yes	Yes	(16)
	Xal	Rice/Xanthomonas	NBS-LRR	No	No	(158)
2	CJ-2/5	Tomato/Cladosporium	LRR-TM	Yes	Yes	(32)
	Cf-4/9	Tomato/Cladosporium	LRR-TM	Yes	Yes	(69, 137, 141)
3	Pto	Tomato/Pseudomonus	Protein Kinase	Yes	Yes	(87)
4	Xa21	Rice/Xanthomonas	LRR-TM-Kinase	Yes	Yes	(129)
5	HS1pro-1	Beet/Heterodera	Unique ^c	No	Yes	(20)
6	Rpw8	Arabidopsis/Erisyphe	Unique	Yes	No	(157)
7	mlo	Barley/Blumeria	Membrane Prot.d	No	No	(19)
8	Hml	Maize/Cochliobolus	Toxin reductase	No	No	(68)

TABLE 1 Classes of characterized R genes

NBS = nucleotide binding site. LRR = leucine-rich repeat. TIR = domain with homology to the *Toll* gene of *Drosophila*, and the *Interleukin-1* receptor of mammals. TM = transmembrane domain. Domains are listed as they appear in the proteins from N to C terminal end.

^{2*}Complex locus' indicates the gene belongs to a tightly linked family of highly homologous genes.

^bPrf is required for Pto mediated resistance to P. syringae pv tomato strains carrying avrPto and for the Fen mediated, hypersensitive-like reaction to the organophosphate insecticide Fenthion.

"The predicted HSIP"¹⁰⁻¹ protein was originally reported to have a LRR-TM signature though it poorly fits the LRR consensus and has minimal similarity to other known resistance genes (40).

^dPredicted 60-kDa protein is membrane anchored with at least 6 membrane spanning helices.

(Hulbert et al. 2001. Ann. Rev. Phytopathol. 39: 285-312)

Ramalingam et al. 2003. *Molecular Plant-Microbe Interactions* 16:14-24

Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice

(Ramalingam et al. 2003. MPMI 16:14-24)

(Ramalingam et al. 2003. MPMI 16:14-24)

NBS-LRR-encoding genes and their organization in the genome

Species	Genome size (Mb/1C)	No. of NBS- LRR genes	No. of loci	References
Arabidopsis	145	166	91	Richly et al. 2002
Japonica rice	430	500 - 750	>52	Goff et al. 2002 Meyers et al. 1999 Santos et al. 2002
Indica rice	430	500 - 750	>142	Meyers et al. 1999 Santos et al. 2002
Soybean	1,100	1,500 - 2,000	334	Wu et al. 2003

Fig. 1. Example of the soybean R gene cluster BAC contigs (A) and the digitized fingerprints of the contig BACs (B). This contig consists of 24 BACs, spanning 727 kb in physical length, and is mapped to the region of linkage group J of the soybean genetic map containing the genes conferring resistance to powdery mildew (*Rmd*) and *Phytophthora* stem and root rot (*Rps2*), and the gene for ineffective nodulation (*Rj2*). Ten of the 24 BACs prefixed with "E" were from the soybean cv. Forrest BAC library and 14 prefixed with "IS" from the soybean cv. Williams 82 BAC library. The "E" clones suffixed with a, ag or acg indicate the clones that were hybridized with probes RGA1, RGA1 and RGA7, or RGA1, RGA3 and RGA7, respectively. The locations of the RGAs in the "IS" clones were not studied.

PCR products of cotton Auburn 623 genomic DNA amplified using the degenerate primer pair designed from the conserved motifs (NBS-LRR) of the cloned plant disease resistance gene-encoding proteins

Ordered library of candidate genes for resistance to fungal, nematode, bacterial, pest and viral pathogens in cotton

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

Table 1. Cotton BAC and BIBAC Libraries Constructed by the the USDA-ARSand the TAMU GENEfinder Genomic Resources at College Station, Texas.

Genotype	Genome size (Mb/1C)	e Mean insert size (No. of kb) clones	Genome equivalents	Vector	Cloning
Tamcot HQ95	2,250	93	51,072	2.2x	pBeloBAC11	Hind III
Auburn 623	2,250	140	44,100	2.7 x	pBeloBAC11	Bam HI
TM-1NIL(ESP) 2,250	148	38,400	2.5 x	pECBAC1	Hind III
		138	38,784	2.3 x	pECBAC1	Bam HI
		142	38,400	2.4 x	pECBAC1	<i>Eco</i> RI
TM-1	2,250	152	53,760	3.6 x	pECBAC1	Hind III
		130	76,800	4.4x	pCLD04541	Bam HI
Total			341,316	20.1 x		

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

DNA Markers

- 1. RFLP Restriction Fragment Length Polymorphism
- 2. STS Sequence Tagged Site
- 3. CAPS Cleaved Amplified Polymorphic Sequences
- 4. RAPD Randomly Amplified Polymorphic DNA
- 5. AFLP Amplified Fragment Length Polymophism
- 6. SSR Simple Sequence Repeat or Microsatellite
- 7. SNP Single Nucleotide Polymorphism

Gene Mapping

The most popularly used method of mapping genes is genetic mapping that is based on: [1] recombination frequency, and [2] polymorphism

Arabidopsis	5 125 Mb/1C	25,000 genes
Rice	430 Mb/1C	50,000 genes
Cotton	2,200 Mb/1C	50,000 – 80,000 genes

Gene Isolation

- Library screening
- DNA subtraction and differential display
- EST and genome sequencing
- T-DNA or transposon tagging
- PCR-based gene candidate
- Positional cloning

Positional cloning

Integrative Physical Mapping

Physical mapping: Reconstruction of chromosomes from DNA fragments cloned in BACs, PACs, PBCs and/or YACs

Significance of An Integrated Map for Genome Research

It is a "freeway" for rapid isolation of numerous mapped genes and QTLs, and for many other genetic and biological studies

BAC-based Physical Maps Constructed (as of November 20, 2002)

Physical Maps Published

- Arabidopsis (Marra et al. 1999; Chang et al. 2001)
- Drosophila (Hoskins et al. 2000)
- Human (International Human Genome Mapping Consortium 2001)
- Indica rice (Tao et al. 2001)
- Japonica rice (Chen et al. 2002)
- Mouse (Gregory et al. 2002)

Physical Maps under Construction:

Soybean (NSF, IUSB - TAMU/SIU), maize (NSF - UMC/AU/UNJ), wheat D genome (NSF - UCD/TAMU), tomato (NSF - CU/AU), chicken (USDA, NIH - MSU/TAMU/WU)

Integrative Physical and Genetic Mapping of Agricultural Genomes (1997 – present)

PI/Co-PI: Hongbin Zhang

Species	BACs/ BIBACs	Progress	Funding Agencies
Indica rice	21,078	Tao et al. 2001	RF, THECB, TAES
Arabidopsis	10,368	Chang et al. 2001	NSF, THECB
Soybean	85,944	Wu et al. 2003	NSF, IUSB
Chicken	66,048	Ren et al. 2003	USDA, IFAFS
Japonica ric	e 23,040	Li et al. 2003	RF, TAES
Cotton	>200,000	Fingerprinting	

A genetic, physical and cytogenetic integrated map

A strategy for integrative mapping of the cotton genome

Collaborative efforts:

Development of a Robust Integrated Physical and Genetic Map of the Cotton Genome

- If possible, please use the source BACs of the cotton integrated physical and genetic map under development so that your DNA markers or genes will be automatically incorporated into the cotton genetic and physical maps
- If a non-source BAC library of the map is used in your research and you could send the BAC clones to us, we could fingerprint and incorporate them into the cotton genetic and physical maps

In return, you will be able to use the integrated physical and genetic map in your research

Automated procedure for physical mapping with BACs

Three-enzyme kit

A: BAC fingerprint images

B: BAC fingerprints from one channel of the ABI 3100 analyzer

BAC fingerprints generated by the thee-enzyme kit: Enzymes: *Hind III, Bam HI* and *Hae III*; one-tube one-step reaction; 2 BACs per channel of ABI 3100; and readable fragments range from 35 to 500 bases.

(Xu, Sun amd Zhang, unpublished)

Table 2. Progress of whole-genome physical mapping ofthe cultivated cotton (as of August 2003)

Genotype	Mean insert size (kb)	No. of clones	Genome equivalents	Vector	Cloning site	No. of clones fingerprinted
TM-1	152	53,760	3.6 x	pECBAC1	<i>Hin</i> d III	23,040
	130	76,800	4.4 x	pCLD04541	Bam HI	76,800
Total		130,560	8.0x			99,840 (6.1x)

Status of the Cotton physical map from automatic assembly

Date	August 18, 2003
Number of clones in FPC database	85,040
Coverage of the clones	5.6 X
Number of singletons	11,411
Number of contigs	5,466
Contigs containing	
> 200 clones	1
101 – 200 clones	0
51 – 100 clones	1
26 – 50 clones	11
10 – 25 clones	330
3 – 9 clones	3537
2 clones	1766

FPC Ctg1 COTTON-1	· 🗆						
Whole Zoom: In Out 2.0 Hidden: Buried Configure Display Clone:							
Edit Contig Trail Clear All Merge Clone BSS Analysis							
Ctg1 of COTTON-1. Clones 27 of 78. Markers 0 of 0. Sequenced 0. Length 228							
bigg of correctly called an of ro, harkers of or o, sequenced o, tengen and							
942 kb							
cotton43H14a1*							
Sotton43H14b15*	c <u>otton33011*</u>						
cotton43H14d15*	cotton47P14*						
cotton43H14F18*	<u>cotton55D24</u>						
cotton43H14C18*	:otton58D23*						
	:on43H14*						
	<u>I14*</u>						
	<u>9*</u>						
	_						
<u>cotton52L9*</u> <u>cotton115B6</u>							
<u>cotton14Mb*</u> <u>cotton117K15*</u>							
<u>cotton18M6*</u> <u>cotton107K16*</u>							
cotton27N6*	<u>cotton27N6*</u>						

Example of the BAC/BIBAC contigs of the cotton TM-1 genome physical map

Development of Genomic Tools for RKN Resistance Breeding in Cotton

- Root-knot Nematode Resistance
- Mapping Populations
- PCR-based DNA Marker Development
- Candidate Genes for Resistance to Different Pathogens, including Nematodes
- Large-insert BAC libraries
- Integrated Physical and Genetic map construction
- Future Research Directions and Plans

Future Research Directions and Plans

- 1. Construct the high-density local genetic maps for the loci containing RKN resistance genes using the primers and the cotton disease resistance gene candidate clones identified, and other available DNA markers
- 2. Develop two or more PCR-based, user-friendly, highly polymorphic and closely linked DNA markers for each locus of the RKN resistance genes using the cotton physical map

The genetic distance between the genes and the markers should be within 1.0 cM, reducing the probability of misselection by marker-assisted selection to <1%

Future Research Directions and Plans (continued)

- 3. Establish an encyclopedia of the disease resistance genes and related sequences, including those for nematode resistance, in cotton
- 4. Identify and characterize all loci containing disease resistance genes and related sequences in the cotton genome using the cotton physical map
- 5. Isolate the genes conferring resistance to RKN and all other pathogens, including nematodes, fungi, bacteria, pests and viruses, that are important to cotton production using the cotton physical map by "gene fishing" and/or "gene golfing"

Acknowledgements

Ms. Limei He, TAMU Dr. Shuku Sun, TAMU Dr. Forest Robinson, USDA-ARS/TAMU Dr. Charles C. Cook Dr. Zhanyou Xu, TAMU and USDA-ARS Ms. Lina Covaleda, TAMU/USDA-ARS

Dr. Russell Kohel, USDA-ARS/TAMU

Dr. John Yu, USDA-ARS/TAMU

Ms. Jianmin Dong, USDA-ARS/TAMU

Dr. Mi-Kyung Lee, TAMU

Dr. David M. Stelly, TAMU