Breeding for Bacterial Blight Resistance in Cotton Fred Bourland

Outline

- 1. Review breeding work for bacterial blight resistance.
- 2. TAM-MAR methods and modifications.
- 3. Importance of bacterial blight resistance.
- 4. Concerns: Host differentials and race identification, access to cultures of virulent races.

I. Review of breeding work

- Knight and Clouston. 1939. Inheritance, major "B" series of genes with modifier genes.
- Bird and Blank. 1951. Methods for screening.
- Brinkerhoff and Bird. 1950's through early 1980's.
- Brinkerhoff. 1963. Technical Bulletin T-98 (95 pages)
- Hunter, Brinkerhoff, and Bird. 1968. Identification of races.
- Bird. 1982. The MAR system.
- Brinkerhoff, Verhalen, et al. 1984. Immunity to bacterial blight and implications to other diseases.

I. Review of breeding work

Cotton breeding programs that actively screen for resistance to bacterial blight (my list):

- Bird, EI-Zik, Thaxton: TAM-MAR.
- Several Texas seed companies.
- Stoneville Pedigreed Seed Co. 1970's, 1980's.
- Thaxton: Mississippi State 2000's

Current:

- Bourland at Miss. State & UA. 1978 to present.
- Texas seed companies?
- CSIRO (FiberMax germplasm), Australia.
- Fundação MT Mato Grosso, Brazil.

I. Review of breeding work

Why has BB resistance been a low breeding priority in U.S.?

- Low incidence of BB (acid-delinting).
- Low yield loss associated with BB (timing and degree of leaf loss from canopy; boll rots).
- Low interaction of BB with center pivot irrigation.
- BB resistance not considered worth the extra work required to inoculate and screen materials.

Fig. 3. Seed with no mold growth and only slightly emerging radicles (top right) after 8 days at 13.3 C are selected. Not selected are seed with radicles extending into the crook (top left) or with mold growth or damaged radicles (middle and bottom).

II. TAM-MAR methods and modifications

Current UA screening for bacterial blight resistance:

- 1. Evaluate all <u>segregating populations</u> (F_2 through F_4), <u>progeny</u> rows (F_5 and F_6), and <u>seed increases (strains)</u> that include at least one resistant parent.
- 2. After stand established, thin to individual plants (roguing).
- 3. Inoculate 2-4 leaf plants using Mud-Master® sprayer with mixture of races (include race 18). Surfactant (e.g. Silkin™) enhances inoculation success.

Evaluation:

- Select resistant plants from segregating populations.
- Discard progeny rows that have any susceptible progeny.
- Remove susceptible plants from seed increases.

Logistics – UA Cotton Breeding Program

Year	Procedure
1	Cross made & winter increase
2	Segregating pop. – Modified SSD
3	Segregating pop. – Modified SSD
4	Segregating pop. – Plant selection
5	1 st year progeny row evaluation
6	Advanced progeny row evaluation
7-10	Replicated Strain Tests
9+	Regional Strain & State Variety Tests
10+	Release germplasm line/variety or discard.

UA Cotton Breeding Program Releases

82 Germplasm Lines and 4 cultivars since 1986 (Includes 15 germplasm lines released via Mississippi Agricultural and Forestry Experiment Station)

Characteristics

- 76/86 are resistant to bacterial blight.
- Most are resistant to Fusarium wilt (Nat'l Fus Wilt Test, Tallassee, AL)
- Most have some resistance to Verticillium wilt.
- RKN, seedling disease, seed deterioration, heat stress?
- All conventional.
- 81/82 have normal leaf shape.
- 4 /82 are nectariless.
- 5 /82 possess exceptional fiber quality.
- Most are early maturing.
- Varying leaf, stem, and bract pubescence.
- Varying response to tarnished plant bug & other insects.
- Varying yield components & specific adaptation.

III. Importance of bacterial blight resistance

Why do I breed for bacterial blight resistance?

- Easily established (if have access to good cultures).
- Establishes a distinctive characteristic.
- Provides insurance against epiphytotic.
- Aids in maintaining pure lines by identifying segregating progenies and off-types in seed increases.
- May enhance host plant resistance by adding to level of horizontal resistance (via resistance to all races).
- 43-year old habit!

IV. Concerns

1. Host differentials and race identification

Race number	Acala <u>44</u> none	44 <u>2B-S9</u>	Stoneville 20 B7+poly	Mebane B-1 B2+poly	1-10B B _{In} +poly	20-3 B _N +poly	101-102B B2B3+Unk.	Gregg ^C Unknown
2	- -	*	+	-	-	-	-	
2	-	+		-	+	-		
5	-1- -1-	4	-		-	+	-	
4	т _	1 -	-		+	+	-	
5		т 		+	+	-	-	
6	-1-	77		-1-	+	+-		
1		+	-		- -	_	-	
8		÷		т		+	-	
9	+		4		-	- -	-	
10	+	+	+	-+-	T		1000	+
11	+	+				-		
12	+	÷-	+	.		-		
13	+	-					-	
14	+	-}-	+		+	+	-	
15	- <u>+</u> -	- -	- -	-	+	-	-	
16	_!_	+	+	+	-	+		
17	1	_	+	_		+	-	

^a+ = Susceptibility of differential, - = resistance.

^bBacterial blight resistance gene compliment of each differential.

^CGregg is included as a supplemental differential to distinguish between races 1 and 11, and 2 and 12.

IV. Concerns

- 1. Host differentials and race identification
 - Availability and purity of all the host differentials?
 - Purity and virulence of races (race 18)?
 - Over time, are new races evolving?
 - What races would likely occur in naturally infected fields?
- 2. Access to cultures of virulent races.
 - Cultures of races (periodically confirmed using host differentials) were supplied by Bird, El-Zik, Thaxton.
 - PDA plates supplies by Craig Rothrock.
 - Restrictions to moving cultures across state lines (APHIS).
 - Have tried to use Fundação MT methods which are based on field collected, infected leaves; but what is race identification?

IV. Concerns

2. Access to cultures of virulent races. - Fundação MT methods: Preparing the inoculum and the bacterial suspension

- Collect cotton leaves infected with bacterial blight and dry them in an oven set with a temperature of 40°C;
- Grind leaves to a very fine powder. This procedure can be done with different approaches, i.e. mortar and pestle, electrical grinder, industrial blender;
- Infected material (dry leaves or powder) must be kept in a condition of 4 to 10°C, in order to avoid loss of bacterial activity;
- The correct rate for the spraying bacterial suspension is 4 grams of infected leaves (powder) per liter of water; (3.67 lb powder/110 gal tank)
- After the mixture, it is recommended to "rest" the bacterial suspension for 30 minutes in order for the inoculum to homogenize in the solution;
- Filter the bacterial solution using a fine sieve mesh in order to avoid obstruction of the spray nozzles;
- In every liter of the bacterial suspension prepared, it is recommend to add 2,5 mL a Silicone based adjuvant (i.e. Break-thru, Silwet L-77).

IV. Concerns

- 1. Host differentials and race identification
- 2. Access to cultures of virulent races.
- 3. Be able to effectively, efficiently, and confidently screen for resistance.

