Development of genotype independent cotton transformation protocol

Shyam Barampuram and Sergei Krasnyanski Department of Horticultural Science North Carolina State University

What are our goals?

- Robust and reproducible procedures
- Practical and adaptable protocols
- Acceptable transformation efficiency
- Protocols available in public domain

Common strategies for genotype-independent transformation of cotton:

• Agrobacterium-mediated transformation targeting meristems in shoot or embryo apex

• In Planta pollen-mediated transformation

• In Planta pollen-tube pathway transformation

Agrobacterium-mediated transformation of meristems in shoot or embryo apex

L1 gives rise to the epidermis, L2 gives rise to ground tissue, L3 forms the body of new tissues, including vasculature and germline tissue.

Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation Gould JH and Magallanes-Cedeno M Plant Mol. Biol. Rep. (1998), 16, pp 1-10

Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex Zapata C, Park SH, El-Zik KM, Smith RH, Theor Appl Genet, 1999, 98: pp 252-256

The current status of gene transformation in cotton. Sakhanokho HF, Chee PW SAAS Bull. of Biochem. and Biotechnol (2002), 15, pp 34-46

Germ line genetic transformation in cotton (*Gossypium hirsutum* L.) by selection of transgenic meristematic cells with a herbicide molecule Aragao F, Vianna G, Carvalheira S, Rech E Plant Science (2005), 168, pp 1227–1233

Tissue culture-independent *In Planta* transformation strategy: an *Agrobacterium tumefaciens*mediated gene transfer method to overcome recalcitrance in cotton (*Gossypium hirsutum* L.) Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU The Journal of Cotton Science (2008), 12, pp 264-272

Multiple shoot regeneration of cotton (*Gossypium hirsutum* L.) via shoot apex culture system Bazargani MM, Tabatabaei B, Omidi M African Journal of Biotechnology (2011) Vol. 10(11), pp. 2005-2011

Agrobacterium-mediated transformation of cotton shoot apex with *SNC1* gene and resistance to cotton fusarium wilt in T₁ generation Lei J, Wang D, Shao L, Wei X, Huang L Cotton Genomics and Genetics (2012), Vol.3, No.1, pp 1-7

Transgenic Indian cotton (*Gossypium hirsutum*) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Pill-Soon Song, Jayabalan N American Journal of Biochemistry and Biotechnology (2009), 5 (2), pp 63-74 ???

Seed sterilization

Seed germination for 48 h

5-10 days old seedlings

Needle wounding of apical meristem

Meristem wounding with sand and vortexing

Cut shoot apex

Split shoot apex

High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (*Gossypium hirsutum* L. cv Narashima) by using embryo apex Pathi KM and Tuteja N Plant Signaling & Behavior (2013), 8:1, e22763, pp 94-99

In Planta pollen-mediated transformation

The preliminary study on transformation of cotton pollen using Agrobacterium mediated vacuum infiltration Zhang Y, Huang L, Zhou X, Wang D Cotton Science (2008), 20(5), pp 354-358

Pollen-mediated genetic transformation of cotton with the Arabidopsis thaliana hmgr cDNA using the particle gun Gounaris Y, Galanopoulou S, Galanopoulos N, Ladopoulos A, Michailidis Z, Theophilous Z Food, Agriculture and Environment (2005), Vol. 3, Issue 2, pp 157-160

In Planta pollen-tube pathway transformation

Evaluation of Cotton Transformation Via Pollen-Tube Pathway Kohel RJ and Yu J In Vitro Cell Dev Biol (2001) 42, p.498–501

Direct transformation of higher plants through pollen tube pathway Peffley E, Allen R, Song P, Shang X Patented in 2003, Texas Tech University

Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding Song X, Gu Y, Qin G Life Science Journal (2007), 4(1), pp 77-79

Establishment of transgenic cotton lines with high efficiency via pollen-tube pathway Zhang H, Zhao F, Zhao Y, Guo C, Li C, Xiao K Front. Agric. China (2009), 3(4), p. 359–365

Cotton transformation via pollen tube pathway Wang M, Zhang B, Wang Q Methods Mol Biol. (2013), 958, p,71-77

Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover Liu Z, Zhu Z, Zhang T Methods Mol Biol. (2013), 958, p.199-210

Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton Chen TianZi, Wu ShenJie, Zhao Jun, Guo WangZhen, Zhang TianZhen Biotechnol Lett (2010) 32:547–555

Protocol outline:

Pistil drip 10-12 hours after pollination resulted in 0.07–0.17% of Bastaresistant plants/viable seeds generated.

Stigma excision prior to pistil drip 10-12 hours after pollination provided transformation efficiency of 0.46–0.93%.

Stigma excision prior to pistil drip 24-26 hours after pollination resulted in only 0.04-0.06% of transformation efficiency.

Agrobacterium-mediated floral transformation

A, flower 6-8 h after hand pollination; **B**, flower after 22-24 h after hand pollination; **C**, flower with cut off sepals and petals before *Agrobacterium* treatments.

Agrobacterium injected into the style of flower

A, on the top of style (stigma was removed); **B**, on the half cut style (stigma with upper style was removed); **C**, on the basal part of style (entire style was removed).

A, on the top of style (stigma was removed); **B**, on the half cut style (stigma with upper style was removed); **C**, on the basal part of style or tip of the boll (entire style was removed).

Toluidine staining of cotton flowers

Toluidine staining and slicing

Flowers stained 3-4 hours after pollination

Flowers stained 7-8 hours after pollination

Flowers stained 23-24 hours after pollination

	Agro applied 2-4 h after pollination on uncut stigma	Agro applied 24-26 h after pollination on cut style	Agro applied 10-12 h after pollination on uncut stigma	Agro applied 10-12 h after pollination stigma excised
No. of flowers treated	664	785	605	263
Bolls harvested	55	645	339	54
Viable seeds	786	16136	8880	1218
Transformed seeds	0	2	4	7
Boll setting rate	8.28%	82.17%	23.33%	21.34%
Transformation efficiency	0%	0.01%	0.05%	0.57%

Effect of GA₃ on boll and seed development

 Control
 0.1
 0.2
 0.3
 0.5

Bright 1x 0.320 secBlue 1x 0.320 secBright 1x 1.0 secBlue 1x 1.0 secT2 mature seeds transformed with TN211 construct

Bright 1x 0.98 sec

Blue 1x 0.98 sec

20-22 days old seeds collected from the flowers treated with *Agrobacterium* carrying TN211 construct

Bright 1x 2.0 sec

Blue 1x 2.0 sec

20-22 days old seeds collected from untransformed Coker 312 flowers

Summary of floral transformations experiments

Hours after pollination	Number of flowers treated	Number of bolls analyzed	Results
8 hours	162	101	No GFP expression
24 hours	111	95	No GFP expression

Acknowledgement

Shyam Barampuram

George Allen

Candace Haigler

Vasu Kuraparthy

