Mapping QTX based on Omics Data and Their Application in Crop Breeding

Jun Zhu

Agronomy Department, Zhejiang University

Mendelian traits

- Phenotypes controlled by singular genes
- No epistasis
- No GE interaction

Complex traits

- Phenotypes controlled by multiple genes
- Epistasis (gene-gene interaction)
- Gene-environment interaction
- Genetic pleiotropy and heterogeneity
- Low heritability
- Limited statistical power

Genetic Mechanism for Complex Traits

QTL Mapping Linkage Analysis

Google Scholar: 122,000 for QTL,

Limitation of QTL Mapping Based on Small Number of Markers

- 1. Need linkage map of markers
- 2. QTLs detected only for mapping population derived from two parents
- 3. Mapping results cannot be applied to other parents and breeding populations
- 4. QTL mapping cannot be conducted by population involved selection/abnormal segregation
- 5. MAS may not be efficient if QTLs not closely linked to markers
- 6. QTL cannot be conducted for arbitrary breeding populations and germplasm

Google Scholar: 122,000 for QTL,

20,500 for GWAS

Partitioning of Phenotypic Variation $y = \mu + E + G + GE + \varepsilon$ $G = \mathring{a} a + \mathring{a} d + (\mathring{a} \mathring{a} aa + \mathring{a} \mathring{a} ad + + \mathring{a} \mathring{a} dd)$ $GE = \mathring{a}ae + \mathring{a}de + (\mathring{a}\mathring{a}aae + \mathring{a}\mathring{a}ade + + \mathring{a}\mathring{a}dde)$ Environment Effects (E): QTL Effects (G): **Addtive (a), Dominance (d) QTL-QTL** Interaction (aa, ad, dd) QTL-Env Interaction (GE) ae, de, aae, ade, dde Random Error (Euh Zhu, Zhejiang University 10 GMDR-GPU Parallel Computation for Genome-Wide Screening ~ 2k Candidate SNP (n = 5,000, SNPs = 1.0×10⁶)

GPU computation for 1D searching: 1×10⁶ steps

 $y_{ij} = \mathcal{M}_{j} + q_k u_{ki} + q e_{kj} u_{ki} + \theta_{ij}$

GPU computation for 2D searching: 0.5×10¹² steps

$$y_{ij} = M_j + \bigotimes_{k=1}^r (q_k u_{ki} + q e_{kj} u_{ki}) + (q q_{kh} u_{ki} u_{hi} + q q e_{khj} u_{ki} u_{hi}) + \mathcal{E}_{ij}$$

Computing Simulation by CPU and GPU for 10⁵ SNPs and 5,000 persons

(Conducted at Microsoft Research Asia, Beijing, China)

- Four years and eight months by
 - 24 CPU and one computer
- I day by 400 CPUs and 80 computers
- < 1 day by 5 Tesla C2050 GPUs and one computer

Traditional CPUs (multi-core)

GPU (Graphics Processing Unit)

GPU-Ba	ase		<u>on</u>	<u>ipu</u>	tati	on	S	oftw	a	re		3	M	D	F	}-	G	P	U
Root Help File Exec		X IA	Ster	· Ior	· scr	een	in	g one	e n	11				51		PS	•	j	
Project Navigat	MdrRawT 3D Int	Txt#1 × MdrR eraction	awNet#2 ×	MdrRawPre#3	8 × MDR_NE	T ×													
<pre> ← □ MdrPrj └ RAW_TXT ← □ RAW_NET </pre>	SNP-1 SNP5 SNP5 SNP5 SNP5	SNP-2 SNP12 SNP12 SNP12 SNP27	SNP-3 SNP27 SNP53 SNP72	CVC 10/10 10/10 7/10	Accurac 0.7380 0.8401 0.7382	<pre>> </pre> <pre><1e-3 </pre> <pre><1e-3 </pre> <pre><1e-3</pre>	P-	(0)SNP5	11_							Ī			
- D MDR_LOCs D RAW_INTS - D RAW_PRE	SNP12 SNP12 SNP12 SNP12 SNP12 SNP12	SNP28 SNP53 SNP53 SNP53 SNP53	SNP53 SNP70 SNP72 SNP88 SNP89	10/10 10/10 10/10 10/10 10/10	0.7619 0.7601 0.7567 0.7657 0.7610	<1e-3 <1e-3 <1e-3 <1e-3 <1e-3		(2)SNP27				4							Į
MDR_NET	SNP12 4D Int	SNP53 eraction	SNP95	10/10	0.7657	<1e-3		(3)SNP28	╟		╢	+		╢			₩	╫	•••
	SNP-1 SNP5 SNP5 SNP5 SNP5	SNP-2 SNP12 SNP12 SNP12 SNP12	SNP-3 SNP27 SNP28 SNP53 SNP53	SNP-4 SNP53 SNP53 SNP70 SNP72	10/10 10/10 10/10 10/10 10/10	Accurac 0.8338 0.8380 0.8351 0.8379	<1 <1 <1 <1 <1	(4)SNP53	⁴	•	Ħ	•	**	ţţ.			İ		•••
	SNP5 SNP5 SNP5 SNP12 SNP12	SNP12 SNP12 SNP12 SNP27 SNP28	SNP53 SNP53 SNP53 SNP53 SNP53	SNP88 SNP89 SNP95 SNP72 SNP89	10/10 10/10 10/10 10/10 5/10	0.8347 0.8280 0.8358 0.7431 0.7612	<1 <1 <1 <1 <1	(6)SNP72				_							┩
	SNP12 5D Int	SNP28 eraction	SNP53	SNP95	10/10	0.7654	<1	(7)SNP88		-	╉			_	H		-		╢
	SNP-1 SNP5 SNP5	SNP-2 SNP12 SNP12	SNP-3 SNP27 SNP27	SNP-4 SNP28 SNP53	SNP-5 SNP53 SNP70	CVC 9/10 9/10	Ac 0. 0.	(8)SNP89			+				+			+	+
								(9)SNP95			+				-	L		-	-

QTXNetwork-GPU Parallel Computation for Genome-Wide Gene Mapping (n = 5,000, ~2 k SNPs)

360X faster for estimating genetic effects of genes

CPU computation for estimating gene effects in full model: 2,000 permutations, 20,000 MCMC

$$y_{ij} = M_{j} + \bigotimes_{k=1}^{r} q_{k}u_{ki} + \bigotimes_{k,h=1,k^{+}h}^{s} qqq_{kh}u_{ki}u_{hi}$$
$$+ \bigotimes_{k=1}^{r} qe_{kj}u_{ki} + \bigotimes_{k,h=1,k^{+}h}^{s} qqe_{khj}u_{ki}u_{hi} + e_{ij}$$

BioPubInfo

Based on 1000 Databases, 6800 Species,

6M Articles, 20M Abstracts, 0.3B Sentences analysis

QTT Mapping for Diallel Crosses of Cotton

Chinese Sci. Bull. 2012, V57

8 Parets, 10 Crosses (1×2, 1×3, 1×5, 1×8, 2×5, 3×5, 4×5, 5×6, 5×7, 5×8)

mRNA obtained from Buds, QTT mapping for Lint yield based on 20,000 transcripts. 6 largest QTTs listed

QTT ID	GeneBank ID	Gene Description	Effect	h^2 (%)
Q1999	DT049282	Amine oxidase, putative	-13.59	31.62
Q1951	CO120827	Nodulin MtN3-like protein	-10.64	19.38
Q1271	CO127124	UDP-glycosyltransferase 83A1-like	-7.44	9.49
Q1708	CD486429	Alcohol dehydrogenase	6.39	6.99
Q1521	DW505577.1	Skp1, putative	6.35	6.9
Q1778	DT466217	WRKY transcription factor	-5.43	5.05

The Contribute of QTT to Additive Effects

Parant		Additive		Cont	tributed	additive	effect	
	Trait	effect	Г1999↓	T1951 ↓	Г1271↓	Γ1780 ↑	T1521 ↑	Г1778 ↓
	LintYld	2.62 *	2.12 [‡]	1.09 [‡]	1.01 [‡]	0.12 [‡]	-1.15 [‡]	0.08 [‡]
\mathbf{A}_{1}	Lint%	2.26 [‡]	1.07 [‡]	-0.25 [‡]	1.01 [‡]	-0.02 ‡	-0.78 [‡]	-0.51 [‡]
	BollWt	0.17 [‡]	-0.09 [‡]	0.05 [‡]	-0.13 [‡]	0.06 ‡	0.26 [‡]	
	LintYld	-1.61 *	0.22 [‡]	0.21 [‡]	0.07 [‡]	-0.49 [‡]	0.84 [‡]	0.10 [‡]
٨	Lint%	-0.35 [‡]	-0.25 [‡]	0.03 [‡]	1.07 [‡]	0.72 [‡]	0.29 [‡]	0.00 [‡]
A3	Bolls	1.18 [‡]	0.12 [‡]	0.13 [‡]			0.37 [‡]	-0.01 [‡]
	BollWt	-0.4 [‡]	-0.03 [‡]	-0.02 [‡]	-0.03 [‡]	0.06 [‡]	-0.08 [†]	
	LintYld	8.52 [†]	1.78 [‡]	4.81 [‡]	0.46 [‡]	0.45 [‡]	3.29 [‡]	
٨	Lint%	-0.3 [‡]		0.92 [‡]			0.99 [‡]	1.28 [‡]
\mathbf{A}_{5}	Bolls	0.82 [†]	0.57 [‡]	0.51 [‡]	0.45 [‡]		1.12 [‡]	-0.22 [‡]
	BollWt	0.08 **	-0.06 [‡]	-0.13 [‡]	0.01 [‡]	0.00 [‡]	-0.22 [‡]	
	LintYld	-6.86 [†]	-4.88 [‡]	-5.04 [‡]	-2.19 [‡]	-1.93 [‡]	-6.10 [‡]	-2.92 [‡]
A_8	Bolls	-3.22 ‡	-2.21 [‡]		-2.79 [‡]		-3.04 [‡]	
	BollWt	0.47 [‡]		0.12 ‡	0.40 [‡]	0.45 [‡]	0.45 [‡]	

The Contribute of QTT to Dominance Effects

Cross	D	ominance	2	Contr	ibuted d	ominanc	e effect	
C1055	Trait	effect	T1999↓	T1951↓	Г1271 ↓	Γ1780 ↑	T1521 ↑	T1778 ↓
	LintYld	19.07 [†]	10.19 ‡	0.38 [‡]	2.00 [‡]	0.50 [‡]	13.63 [‡]	1.08 [‡]
$\mathbf{D}_{1 \times 2}$	Lint%	0.68 [†]	0.73 [‡]	-0.01 [‡]	0.28 [‡]	0.12 [‡]	0.42 [‡]	
	BollWt	0.19 *	0.07 ‡	0.05 [‡]	- 0.04 [‡]	0.03 [‡]	0.10 [‡]	0.02 ‡
$\mathbf{D}_{1\times 3}$	LintYld	14.27 *		0.38 [‡]	2.00 [‡]	0.50 [‡]	13.63 [‡]	1.08 [‡]
$\mathbf{D}_{1\times 3}$	Lint%	0.90 [†]		-0.01 [‡]	0.28 [‡]	0.12 [‡]	0.42 [‡]	
$\mathbf{D}_{2 \times 5}$	LintYld	13.39 **	3.22 ‡	6.32 [‡]	0.95 [‡]	-0.94 [‡]	2.69 [‡]	6.89 [‡]
	BollWt	0.19 [†]	0.07 [‡]	0.09 ‡			0.01 [‡]	-0.05 [‡]
n	LintYld	6.84 *	1.48 ‡	1.44 [‡]	3.42 [‡]	1.03 [‡]	-2.52 [‡]	5.83 [‡]
$D_{3\times 5}$	Lint%	0.62 [†]	0.20 ‡	0.11 [‡]		0.16 *	0.02 *	1.14 [‡]
D	LintYld	6.57 *	12.51 ‡	7.66 [‡]	-1.04 [‡]	-0.51 [‡]	-5.48 [‡]	4.93 **
$D_{5\times 6}$	Lint%	0.84 [‡]	0.93 ‡	0.30 [‡]	-0.19 [‡]	0.01 [‡]	-0.01 [‡]	0.84 [‡]
n	LintYld	16.72 [†]	-0.25 ‡	-7.41 [‡]	1.49 [‡]	-2.26 [‡]	-9.25 [‡]	0.39 [‡]
$D_{5\times7}$	Lint%	0.36 *	-0.01 [‡]	-0.24 [‡]	-0.12 [‡]	-0.22 [‡]	-0.18 [‡]	0.08 [‡]
	LintYld	18.77 [‡]	4.99 ‡	19.69 [‡]	- 5.95 ‡	5.12 [‡]	16.80 [‡]	- 0.55 [‡]
$D_{5 \times 8}$	Lint%	0.41 *	0.10 ‡	0.90 [‡]	-0.57 [‡]	0.25 *	0.38 *	-0.19 ‡
	BollWt	0.53 [‡]	0.21 *	0.43 [‡]	0.07 *	0.24 *	0.48 *	0.02 *

Estimates of QTS, QTT, QTP, and QTM for Chromium in Tobacco Variety Test

Type	QTX	Effect	Predict	-lg(P)	h ² (%)	
		ae1	-0.43	2.18		
		ae2	-0.37	1.72		
	Phm1376	ae3	-0.41	2	30.00	
	1 1111370	ae4	0.45	2.38	30.09	
QTS		ae5	0.59	3.78		
		ae6	0.78	6.09		
		aae4	0.41	2.09		
	Phm1053/Phm1471	aae5	0.47	2.55	11.24	
		aae6	-0.48	2.65		
	mRNA2713	q	0.43	3.1	7.47	
	mRNA2123	qe4	3.30	3.15	72.67	
QTT	mRNA2167	qe5	0.54	3.58	1.93	
	miDNA578	qe4	-0.45	2.74	23.6	
	MININAS / 8	qe5	-0.86	5.21	23.0	
ОТР	Amino5	q	-0.97	1.85	32.85	
ΥΠ	Amino5	qe6	-2.43	2.72	34.74	
	MetabA14	q	0.34	9.3	0.01	
QTM	MetabA21/MetabA23	qqe4	-31.53	1.76	00.06	
	MetabA21/MetabA23	qqe6	105.21	6.08	<i>33.</i> 30	

Jun Zhu, Zhejiang University

e1 L1V1 e2 L1V2

e4 L2V1 e5 L2V2 e6 L2V3

L1V3

e3 |

Quantitative Environment Effects of QTTs

One genotype with 31,100 transcripts, five treatments of drug dose (Mean = 302.4)

		Mair	Effect	Do	se 5	Do	se 10	Do	ose 20	Dos	e 25	
QTT	Gene ID	T	h²(%)	TE ₂	h²(%)	TE ₃	h²(%)	TE ₄	h²(%)	TE₅	h²(%)	h²(%)
1-801	1398500_AT	-61.45‡	24.20	- 85.42‡	14.03					-51.63**	3.70	41.93
1-166	1369679_A_AT	-46.93 ‡	14.11									14.11
1-9	1368695_AT	-25 .16*	4.06			-69.75+	8.83					12.89
1-531	1368829_AT	<mark>38.82</mark> ‡	9.66									9.66
1-223	1387221_AT	21.86 *	3.06			35.91*	2.34					5.40
1-1704	1388453_AT	13.92 *	1.24			28.38*	1.46			-41.90 ‡	2.44	5.14
1-783	1370308_AT	-18.94+	2.30							-18.04*	0.45	2.75
1-988	1372306_AT	15.81‡	1.60					27.39*	0.72			2.32
1-394	1367780_AT	- 9.13‡	0.53							-15.19‡	0.32	0.85

SNP Mapping for Wheat F9 Population

F₉ Populations, SNPs = 146, N= 499

2012 Grain Weight	Mean = 78.7	Total h	eritabili	ty = 90.8°	%
SNPID	SNPID	Туре	Effect	-log(P)	h^2
BE490613_3A_1		а	3.90	36.19	8.46%
BE443010B_Ta_2_1		а	-0.80	2.01	0.35%
		d	1.33	1.55	0.98%
BE586140_1A	BG274948D_Ta_2_1	dd	-5.13	4.55	14.58%
BE586140_1A	BE445184_4B	dd	-5.57	5.27	17.23%
BE490613_3A_1	BE443010B_Ta_2_1	aa	-1.53	6.32	1.31%
		dd	-9.29	13.46	47.88%
	_				
2011Ear Humber	Mean = 78.7	Total h	eritabilit	ty = 53.5°	%
SNPID	SNPID	Туре	Effect	-log(P)	h^2
BE444579 3B 1		а	5.68	2.89	2.39%

		- 7		3(- /	
BE444579_3B_1		а	5.68	2.89	2.39%
BE443010B_Ta_2_	1	а	8.22	5.48	5.02%
		d	-14.18	4.25	14.90%
BE442700_7B	BE498985A_Ta_2_1	ad	-13.24	3.83	13.01%
		dd	-0.84	6.92	18.20%

GWAS for Maize NAM Populations McMullen, et al. 2009. Science, 325(7): 737-740

Detected Significant SNPs of Leaf Traits for Maize NAM Population in 9 Environments (N=44,055, SNPs=0.47M) 124 SNPs located within genes and 44 SNPs close to genes

Trait		Chr1	Chr2	Chr3	Chr4	Chr5	Chr6	Chr7	Chr8	Chr9	Chr10	Total
	SNPs	3	5	5	1	13	1	2	5	3	2	40
Leaf Angle	$h^{2}(\%)$	0.77	2.2	3.56	0.13	4.56	1.57	0.89	1.21	0.89	0.68	16.46
	$h^{2}(\%)$	0.03	0.18	1.29	0	0.17	0.02	0.25	0	0	0.52	2.46
	SNPs	11	2	8	6	10	3	1	5	6	5	57
Leaf Length	$h^{2}(\%)$	4.4	0.28	3.69	1.64	4.84	0.89	0.18	2.73	3.6	3.61	25.86
	$h^2(\%)$	0.77	0.02	0.55	0.02	0.13	0	0	0	0.61	0.66	2.76
	SNPs	11	5	12	0	17	3	0	11	4	1	64
Leaf Width	$h^2(\%)$	6.47	3.08	3.61	0	8	1.77	0	7.44	1.61	0.22	32.2
	$h^{2}(\%)$	0.55	0.06	0.04	0	0.23	0.03	0	0.8	0	0	1.71
	• ••••			•••••			• • •	• •	••••		• ••• ••• •	••• 3-Lean utility
		•• • • •••				•••	• •• •			• ••••• •	• • • •	2 Leannalest
		•	• • •	•	•• ••			• •		• •	• •	- Leath
-0004400000000 -000-0000000000000000000	00000000000000000000000000000000000000	2000		10400	00044000000000000000000000000000000000	10000000000000000000000000000000000000	440000000000	000-0004400- 000-000-040-0	0000004000004000040000040000040000040000	04000000000000000000000000000000000000	240100-010 110 040100-00000000000000000000000000000	2400
		NNNNNNNNNNNNNNN		www.4444444			เจ้าที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ เอเอเมออออออออออออออออออออออออออออออออ	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			11111111111111111 ກອດອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອ	

Top 10 Major SNPs with Large Additive Effect for LUA in NAM Population

Upper leaf angle	Effect	-log P	h ² (%)	Putative function
S3_176350819(near GRMZM2G133311)	1.41	58.2	2.19	Transcriptional repressor, ovate (Leaf architecture)
S6_34565567(GRMZM2G180519)	-1.19	42.1	1.57	UAA transporter family
S3_167012412(GRMZM2G346132)	1.12	36.9	1.37	Protein tyrosine kinase (Plant architecture)
S5_29918479(near GRMZM2G386952)	1.07	33.9	1.25	Leucine Rich repeats (Plant defense)
S5_76727787(GRMZM2G398559)	-1.05	32.8	1.21	Protein tyrosine kinase (Plant architecture)
S2_4349177(GRMZM2G521862)	0.96	27.7	1.02	Protein of unknown function
S2_7180843(GRMZM2G115705)	0.85	21.9	0.8	B_lectin+Pkinase(Plant defense)
S5_209467974(GRMZM2G359874)	0.78	18.7	0.68	Brix domain (ribosome production factor 2)
S7_22261393(GRMZM2G140352)	0.69	14.6	0.52	FoP_duplication
S1_33287311(near GRMZM2G159110)	0.68	14.5	0.52	Thaumatin family (Plant defense)

Top 10 Major SNPs with Large Additive Effect for LW in NAM Population

Leaf Width	Effect	-log P	h ² (%)	Putative function
S1_34387071(GRMZM2G102483)	-2.53	126.5	3.64	EF hand (Plant defense)
S5_33644874(near GRMZM2G144420)	1.99	7 8. 7	2.24	Cation transporter/ATPase, N-terminus (Nitrogen uptake)
S3_166813357(GRMZM2G141600)	1.9	72.5	2.06	
S6_143981358(near GRMZM2G424582)	1.66	55.6	1.57	Protein kinase domain + Ankyrin repeats (Leaf morphogenesis)
S2_81808173(GRMZM2G007871)	-1.65	54.7	1.54	DnaJ domain + Sec63 Brl domain
S3_155968214(near GRMZM2G161295)	1.47	43.5	1.22	Protein of unknown function (DUF3098)
S8_65750670(GRMZM2G040477)	1.41	40.4	1.13	WD domain, G-beta repeat (Plant architecture)
S9_149745455(GRMZM2G095822)	-1.38	38.9	1.09	Triose-phosphate Transporter family (Phosphate transport)
S2_60078038(GRMZM2G023946)	-1.3	34.3	0.95	Protein of unknown function (DUF1624)
S8_47307917(GRMZM2G094558)	1.28	33.6	0.94	Hydroxyethylthiazole kinase family

Top 10 Major SNPs with Large Additive Effect for LL in NAM Population

Leaf Length	Effect	-log P	h ² (%)	Putative function
S5_84104987(GRMZM2G074634)	11.1	48.4	1.64	OTU-like cysteine protease(Nitrogen uptake,drought tolerance)
S10_122267264(near GRMZM2G125424)	-10.25	41.4	1.4	ABC transporter transmembrane (Plant defense)
S8_112001826(GRMZM2G362163)	10.23	41.3	1.39	C4-dicarboxylate transporter/malic acid transport protein
S5_137151529(GRMZM2G029400)	-8.63	29.6	0.99	GDSL-like Lipase/Acylhydrolase
S10_69602226(GRMZM2G032751)	8.49	28.8	0.96	NB-ARC domain (Plant defense)
S9_137784321(GRMZM2G078469)	-8.31	27.6	0.92	PMR5N+PC-Esterase(plant freezing resistanceprotein)
S1_11949092(GRMZM2G141636)	-8.16	26.6	0.89	NicO domain (High-affinity nickel-transport protein)
S9_28017219(near GRMZM2G049693)	-7.92	25.1	0.84	Multicopper oxidase
S1_107792455(GRMZM2G304897)	-7.75	24.1	0.8	B_lectin+Pkinase+S_locus_glycop(Plant defense))
S9_96774489(GRMZM2G301909)	-7.73	24.0	0.8	Domain of unknown function (DUF4131)

Additive × Evironment Effects of SNPs in 9 Environments

Upper leaf	ae (-log P, h^2 %)	Leaf Width	$p_{\rm e}$ (log P $h^2 $ %)	Leaf Lenoth	ae $(-\log P h^2 0/)$
angle			at (-lug 1, 11 70)	Lear Dengen	ac (-10g 1, 11 70)
	ae1: 0.71 (2.3, 0.56)	<u>\$6_143981358</u>	ae3: -0.66 (1.7, 0.25)	S5_84104987	ae9: 5.44 (2.4, 0.40)
	ae2: 1.29 (6.6, 1.82)	S8 65750670	ae8: 0.59 (1.6, 0.20)		ae1: 8.29 (3.9, 0.92)
	ac2: 0.56 (1.6, 0.25)	_ \$2_60070030		S10 (0(0)))	ae5: -8.99 (4.4, 1.08)
	aes: 0.50 (1.0, 0.55)	52_00078038	ae5: 0.00 (1.9, 0.25)	510_09002220	ae6: 5.72 (2.2, 0.44)
S3_176350819	ae5: 0.59 (1.5, 0.38)		ael: 1.75 (8.1, 1.74)		ae8: 11.57 (6.4, 1.78)
	ae6: 1.80 (12.4, 3.55)	S8_47307917	ae3: -1.37 (5.1, 1.07)		accor 11.57 (0.11, 11.70) ac1: -1.78 (1.7, 0.30)
	ae7: 1.18 (5.5, 1.53)		ae7: 1.09 (3.6, 0.68)	S1_107792455	ac14.70 (1.7, 0.30)
	$a_0(1, 1, 28) (7, 2, 2, 08)$				aes: 4./9 (1.0, 0.51)
	ac ³ 1.30 (7.3, 2.00)		ae9: 0./1 (1.8, 0.29)		ae8: -5.15 (1.8, 0.35)
S6 34565567	ae3: -0.40 (1.4, 0.18)				ae9: -6.39 (2.8, 0.54)
	200· 0 46 (1 4 0 23)			CO 0/774400	ae3: 5.68 (2.2, 0.43)
55_27710477		89_96774489	ae9: -4.01 (1.4, 0.21)		
85_76727787	ae1: -0.50 (1.9, 0.27)				(,)
S2 7180843	ae6: 0.59 (2.3, 0.39)				

S1_33287311 ae6: 0.50 (1.8, 0.28)

Predicted P1, Best Lines & Superior Lines

Entry	G	G+GE1	G+GE2	G+GE3	G+GE4	G+GE5	G+GE6	G+GE7	G+GE8	G+GE9
Leaf Angle	Mean = 61.0									
P1	11.2	12.5	12.5	11.1	10.1	11.8	16.0	13.6	10.7	10.3
Best Line	17.7	19.0	19.0	18.4	16.6	18.3	22.5	20.1	18.3	16.8
Superior Line	21.2	23.5	22.5	23.6	21.4	21.8	26.4	23.6	21.7	21.5
Select SNP	3	7	3	3	5	3	4	3	3	3
Leaf Width	Mean = 87.4									
P2	-6.8	-6.8	-6.1	-5.5	-8.4	-7.7	-6.1	-9.6	-8.0	-7.5
Best Line	-28.8	-30.9	-26.6	-26.1	-30.3	-26.9	-29.5	-33.6	-30.3	-30.2
Superior Line	-51.2	-56.2	-50.6	-49.1	-50.6	-49.5	-51.9	-57.9	-54.3	-55.6
Select SNP	18	19	18	19	16	20	19	18	21	14
Leaf Length	Mean = 752.7									
P1	-15.8	1.0	-22.8	-18. 7	-18.4	-22.1	3.9	-5.5	7.9	-29.6
Best Line	-144.2	<mark>-1</mark> 46.4	-144.6	-134.2	-137.7	-134.9	-153.6	-145.2	-148.8	-197.8
Superior Line	-294.9	<mark>-32</mark> 1.2	-301.9	-290.6	-294.8	-301.7	-321.3	-305.1	-328.9	-344.1
Select SNP	13	1 3	12	11	13	15	15	17	14	13

Importance of Epistasis on Chill Coma Recovery in Drosophila

- SNPs=5.2M, Transcripts=10.1K, N=322
- 7 QTSs, 30 Epistasis QTSs, 5 GxE QTSs
- Total h²(G+GE)=78.3%, h²(A)=59.5%, h²(AA)=16.9%, ___
- R_G^2 =0.862, R_{G+GE1}^2 =0.892 for female, R_{G+GE2}^2 =0.872 for male

Estimates of QTS & QTT for Chill Coma Recovery

QTS	Ge	ene			Effect	Predict	-Log(P)	h ² %
X_5344003	SP	SPR			а	1.60	44.59	14.53
3R_17000695	SN	F4Agamma			а	1.24	27.28	8.73
X_18462691	Bx				а	-1.23	26.85	8.59
3L_1424581	Ptŗ	061F			а	1.20	25.34	8.08
2L 11380311	bet	ween salm and sa	alr		а	-1.09	21.10	6.68
	00					-0.49	2.84	0.68
2R_20211492	bet	ween betaTub601	D and slbo		а	-1.08	20.81	6.58
3L_4163650	ma	IS			а	-1.06	20.08	6.34
3L_2806345/X_8175050	6345/X_8175050 [between CG2083 and CG9973]/[between CG1636 and nAcRalpha-7E]			/[between	aa	0.50	5.47	1.40
2L_4821516/2R_6453209	21516/2R 6453209 [between CG15628 and CG3225]/psq			5]/psq	aa	-0.49	5.31	1.35
3R_4613737/3R_16925749 Pif1A/CG7044				aa	0.41	3.94	0.96	
2R_13934484/X_2406170	CC	CG5767/trol			aa	0.41	3.92	0.96
QTT		Gene	Effect	Predict	-lo	g(P)	h ² %	
1625763_	AT	CG2789	а	-3.44		4.92	5.89	
1634530_	AT	CG13040	а	-11.46)	4.10	65.43	
1630088_	AT	CG16743	а	-2.26		3.24	2.55	
1637483_	AT	CG8736	а	2.76)	2.81	3.78	
1629234_	AT	éclair	а	-3.82		2.65	7.26	
1628259_	AT	Not found	а	-4.38		1.63	9.56	

Estimates of tQTSs for Chill Coma Recovery

SNP	Gene	Effect	Predict	-log(P)	h² %	mRNA	Gene
chillcoma							
2L_11380311	between salm and salr	а	-0.10	32.92	31.38	1625975_at	CG31052
2R_20211492	between betaTub60D and slbo	а	0.29	13.73	41.63	1638991_at	CG5506
		ae1	-0.26	6.18	57.90	1635129_at	CG6332
		а	0.09	5.41	26.38	1626253_at	Glutathione S transferase D4
2R 3662220	CG30497	ae1	-0.23	8.36	72.93	1640649_at	CG15878
2K_3002220	000497	а	-0.17	12.26	36.86	1634444_at	CG12736
		ae1	-0.15	8.47	72.87	1639860_at	Unknown
		а	-0.13	5.10	24.73	1627059_at	uninitiated
		а	-0.08	8.22	22.82	1639748_at	CG15922
		а	0.09	6.62	14.22	1632245_a_at	Serine protease inhibitor 4
2R_12981799	GstS1	а	-0.06	14.58	44.70	1636814_at	Unknown
_		а	-0.07	7.12	13.79	1640463_at	Unknown
		а	0.16	6.42	30.03	1641465_at	CG6153
2R_16439355	CG13430	ae1	-0.22	9.85	80.89	1640044_at	CG7329
3L_1519297	Psa	а	-0.20	6.89	18.33	1623398_at	CG4830
							Gram-negative
3L_8283282	between CG7201 and cert	а	0.10	5.94	22.11	1631633_a_at	bacteria binding
							protein 2
3R_4613737	Pif1A or Pif1B	а	-0.19	14.79	32.81	1637366_at	CG16876
3R 10857239	between CG14861 and	а	-0.06	6.02	28.49	1636121 at	CG12924
	RpL10Aa	u	0.00	0.02	-0117	1050121_u	0012/21
		а	-0.16	6.92	17.33	1634158_at	CG6164
3R_20569151	tok	а	-0.24	28.16	38.06	1629199_at	Antigen 5- related 2
2R_18181213	CG5819	а	0.26	24.70	35.85		
3L_612891	between CG42719 and Reg-2	а	-0.22	19.05	27.32	1630088_AT	CG16743
2L_1763460	between CG17650 and Gr22e	а	-0.21	94.39	50.94	1637483_AT	CG8736
2L_3854056	between CG3964 and slp2	alun	Zhw, 🛂 h	eji ang7 U	niversi	ty	

Impact of Smoking on Genetic Architecture of BMI Behavior (1) Table 1. Detected SNPs for no cofactor and

smoking cigarettes per day as cofactor

			No cofactor			CigPI) cofact	or
SNPID	Gene Name	Effect	Predict	-L(P)	h ² %	Predict	-L(P)	h ² %
3_rs2620535	ZNF385D	d	-1.11	3.20	2.09	-1.13	3.56	1.80
7_rs2178628	SDK1	d	-1.31	4.24	2.90	-0.82	2.06	0.94
0 rs 10514834	GAS1	d	-0.92	2.34	1.44	-0.71	1.65	0.71
9_1810514654		de1	-0.99	1.71	1.65	-1.22	2.39	2.10
12_rs1902753	CDK17	d	-1.77	7.27	5.30	-1.39	5.12	2.73
13_rs7983587	GPR12	d	1.97	8.85	6.57	1.57	6.34	3.47
14_rs10873029	C14orf182	de2	1.14	2.00	2.19	1.22	2.34	2.09
14_rs4905888	CYP46A1	a	0.39	1.31	0.26	0.60	2.50	0.51
		d	-1.01	2.74	1.74	-0.81	2.02	0.91
19_rs3848535	SLC8A2	d	1.02	2.78	1.77	0.96	2.67	1.29
X_rs5957379	LAMP2	d	-1.68	6.61	4.77	-1.21	3.97	2.04

Gene Network for BMI Not Affected by Smoking

Impact of Smoking on Genetic Architecture of BMI Behavior (2)

Table 2. Detected SNPs for only setting no cofactor

SNPID	Gene Name	Effect	Predict	-L(P)	h²%
3_rs2620535	ZNF385D	a	0.44	1.71	0.33
1 rs7674804	CPR125	d	1.02	2.77	1.76
	UI KI25	de1	1.13	1.97	2.16
12 rs10778062		d	1.02	2.75	1.75
12_1310770002	ANOT	de1	1.08	1.88	1.96
13_rs7983587	GPR12	ae1	0.80	2.27	1.09
13_rs9580631	SACS	d	1.25	3.92	2.65
14_rs10873029	C14orf182	aae1	1.60	4.16	4.34
18_rs1982114	C18orf62	d	-1.36	4.52	3.12
X_rs5957379	LAMP2	ae1	-0.68	1.63	0.79
3 rs2620535/14 rs10873029	7NF385D/C14orf182	dd	2.33	3.53	9.22
5_152020555/14_1510075027		aae1	1.60	4.16	4.34

Gene Network for BMI Caused by Smoking

Advantage of Mapping QTX Based on Genome-Wide OMICS Data

- 1. No need for linkage map
- 2. QTX mapping can be conducted for arbitrary breeding populations and germplasm
- **3. Mapping results can be applied to parents and breeding populations**
- 4. QTX mapping can be conducted by population involved selection/abnormal segregation
- 5. Not MAS but SNP/Gene/Protein/Metabolite selection can be applied

Acknowledgments

National Basic Research Program of China (973) National High Technology R&D Program of China (863) HPC Developer Technology at *NVIDIA China* Microsoft Research Asia

Ph. D. Students	Master Students
Zhu, Z. H.	Zhang, C. H.
Jin, G. L.	Zhu, Z. X.
Zhang, F. T.	
Tong, X. R.	
Liang, M. M.	
Wei, H. L	
Xu, H. M.	