Study on molecular mechanism of a new virescent mutant (*vsp*) in short season cotton (*Gossypium hirsutum* L.)

Dr. Meizhen Song State Key Laboratory of Cotton Biology Cotton Research Institute, CAAS, China Oct.11, 2012

Outline

- Background
- Vsp mutated by space
- Morphology and agronomy of Vsp
- Pigment content of Vsp
- Cytological change of Vsp
- Genetic character of Vsp
- The gene mapping of Vsp
- Transcriptome sequencing
- Acknowledgment

Background

Cotton is one of the most important economic crops

- Over 80 cotton-cultivating countries located between 32° south and 47° north latitude on the globe
- About 33 million ha or 5% of the world's arable land is used for cotton planting annually

China is one of the major cotton-producing countries

Cotton planting area: 5-5.5 million ha

Cotton yield: 1350kg-ha-1

Three main produced regions: Yangtze cotton region, Huanghe cotton region, Northwest inland cotton region

Virescent leaves are an important character of plant that can be inherited

Many mutated methods: nature condition, physical treatment(γ-irradiation), chemical treatment(EMS) and tissue culture.

Genetic mutation: one recessive genes in nucleus

Virescent mutations occur in a wide range of flowering plants

cotton (Kohel, 1967, 1974, 1983), arabidopsis (Jitae et al. 2009), rice (Wu et al. 2007), maize (Gerald et al. 1988), tobacco (Archer et al. 1987), peanut (Benedict & Ketringd, 1972), beans (Grafton et al. 1983; Palmer et al. 1980) and tomato (Richard, 1954).

about 26 virescent genes in nucleus that have been identified in cotton a single locus: v1, v2, v3, v4, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v22

double recessive alleles: v5v6

Vsp mutated by space

- Shijian-8 seed-breeding satellite
- Iaunched on Sep.9,2006, and landed in Sichuan Province at 10:43 am Beijing time Sep.24,2006 after a 15-day flight in space
- The satellite carried 215 kilograms of seeds of vegetables, fruits, grains and cotton
- being exposed to cosmic radiation and zero gravity

Morphology and agronomy of Vsp

 Cotyledon color of *vsp* mutant was green and new young true leaves expressed virescence.
 Virescent yellow traits appeared from the first true leaf to anthesis.

The virescent yellow color of one leaf lasted 9 days (216 hours), and divided into three periods

Agronomy traits of the vsp mutant Height, fruit branches, boll numbers, boll weight and yield of Vsp were lower. Fiber length and fiber strength of Vsp were lower.

Table1. Agronomic characters of vsp mutant

Pigment content of Vsp

Chlorophyll a, b and total content

Carotenoid Content

Ratio of chlorophyll a/b

Ratio of Chlorophyll / Carotenoid

Intermediates of chlorophyll biosynthesis

Photochemical efficiency

Table 2. Photochemical efficiency of natural light on fluorescence parameters Fo, Fv/Fm, PlABS, RC/CS₀, VJ and Wk in five leaves of wild type and the vsp mutant

Treatment	Leave age	Fo	Fv/Fm	PIABS	RC/CS	VJ	Wĸ
Ck	0	511 ± 50	0.61 ± 0.02	0.12 ± 0.01	131±11	$0.78 {\pm} 0.02$	0.54 ± 0.04
Vsp	U	818±37	0.44 ± 0.03	0.06 ± 0.05	123 ± 14	0.68±0.03	0.68 ± 0.02
Ck	2	536±69	0.72 ± 0.03	0.80 ± 0.01	203 ± 14	0.55 ± 0.02	0.42 ± 0.02
Vsp	3	1122 ± 23	0.28 ± 0.01	0.02 ± 0.20	104 ± 14	0.66±0.05	0.70 ± 0.02
Ck	5	499±56	0.75±0.03	1.57±0.09	231±13	0.48 ± 0.02	0.36±0.04
Vsp	5	730±17	0.57±0.01	0.27 ± 0.23	173±24	0.55 ± 0.04	0.55 ± 0.03
Ck	-	486±28	0.78±0.01	2.27 ± 0.20	264±21	0.46±0.03	0.32 ± 0.02
Vsp	7	511±16	0.75 ± 0.01	1.26 ± 0.27	233±14	0.52 ± 0.03	0.37 ± 0.02
Ck	0	476±18	0.81 ± 0.01	4.25 ± 0.35	280 ± 13	0.37 ± 0.02	0.30±0.01
Vsp	9	407±60	0.80 ± 0.01	3.15±1.20	216±37	0.40±0.04	0.33 ± 0.02

Cytological change of Vsp

Day 0 leaves

Vsp mutant: The boundary of cell membrane was not clear and the structure of cell wall was blurred. Matrix granule and starch grains were not seen in chloroplasts.

vsp mutant

Day 3 leaves

Vsp mutant: The boundary of cell wall and cell membrane was not clear. Grana and stroma lamellas were decreased and arranged irregularly. Thylakoids decreased and there was hollow and no inclusion.

vsp mutant

Day 5 leaves

Vsp mutant: The boundary of cell wall and cell membrane was relatively clear, the numbers of chloroplasts increased. the shape like spindle, matrix granules appeared. inclusion appeared and starch grains were large.

vsp mutant

Day 7 leaves

Vsp mutant: the structure of cell wall and membrane were clear and bilayer was intact. Grana and stroma lamella were thickened. Numbers of chloroplasts increased and the shape of chloroplasts looked like spindle. There were more inclusion.

vsp mutant

Day 9 leaves

Vsp mutant: Chloroplasts developed perfectly. The structure of chloroplasts was the same as the chloroplasts of the wild type.

vsp mutant

Genetic character of Vsp

Reciprocal crosses were made between the *vsp* mutant and wild type

F2 progeny segregation	F2 (CRRI 58×Vsp)	F2 (Vsp× CRRI 58)
Green plants	1120	1243
Virescent plants	351	401
Total plants	1471	1644
χ^2	0.96	0.29

Table 3. Segregation of F₂ population from two crosses of wild type and the vsp mutant

Note: $\chi^2_{0.05,1}=3.84$, $\chi^2_{c\ 0.05,1}<\chi^2_{0.05,1}$ Difference was not reached 0.05 significance level. The result met with theory ratio 3 : 1. Vsp represent the *vsp* mutant.

Allelic test: The *vsp* mutant was reciprocal crossed with yellow mutant germplasms (v1v1, v3v3, v5v5v6v6, v8v8, v9v9, v10v10, v11v11, v13v13, v14v14, v18v18, v19v19 and vgvg), all obtained plants of F₁ showed green leaves.

F1 progeny												14 14
phenotype	V1V1	V3V3	V5V5 V6V6	V8V8	V9V9	V10V10	V11V11	V13V13	V14V14	V18V18	V19V19	VgVg
Year 2008	69.0	22.0	40.0	72.0	164.0	25.0	17.0	7.0	142.0	02.0	26.0	10.0
(vspvsp も)	00:0	25:0	49:0	72:0	104:0	25:0	1/:0	/:0	142:0	95:0	30:0	10:0
Year 2008		107.0		171.0	44.0				154.0	171.0	44.0	
(vspvsp ♀)		107:0	107:0 —	1/1:0 44	44:0				154:0	171:0	44:0	
Year 2009		101.0	100.0									75.0
(vsp vsp हे)	_	131:0	122:0	:0 —	_	_	_		_	_	_	75:0

Table 4. Phenotype of F_1 progenies from crosses of vsp mutant with known virescent mutants

Note: "—" express no this data. The ratio represent number of green leaf plants to number of yellow leaf plants.

Molecular mapping of Vsp

Bulked segregate analysis (BSA)

Molecular marker technology provides the opportunity to map a gene of agronomic importance in segregating generations (Michelmore et al. 1991). Numerous genes had been mapped using this method. SSR markers and BSA were combined for molecular mapping of *Vsp* gene.

Parents: vsp mutant and TM-1

F₂ population : 186 plants

16000 primers from CMD (Cotton Marker Database) were used to identify polymorphisms between the parents.

Finally, 400 primers could produce polymorphism between the parents.

Table 5. SSR primers used in this study

SSR prefix	BNL	C2	CIR	СМ	DPL	Gh	HAU	JESP R	MGHES	MUSS	NAU	PGML	STV	SWU	TMB
No. of SSR pair	379	187	392	53	200	700	3382	309	84	554	3928	3997	192	1410	750
Total No.=16544															

The polymorphic markers between the parents

These primers were selected by BSA using the two pools, 54 primers linked with the *Vsp* gene were identified. They were used for mapping the *Vsp* gene.

Green individuals

Yellow individuals

The PCR products of PGML01944

The final linkage map consists of 50 markers, the other 4 were removed because of distortion segregation. Then, we used the WinQTLCart software to search for *Vsp* loci. The *Vsp* gene was predicted between marker DPL0796(5.1cM) and NAU2356/2198(5.3cM) on Chr-26.

The results of transcriptome sequencing

Pathway analysis

pathway	Wild and vsp	All- Unigene	Pvalue	Qvalue
Amino sugar and nucleotide sugar metabolism	28	446	9.5e-10	7.8e-08
Diterpenoid biosynthsis	9	124	0.0001	6.9e-03
Galactose metabolism	12	229	0.0003	9.0e-03
Glycerophospholipid metabolism	27	930	0.0018	2.9e-02
Spliceosome	31	117	0.0021	2.9e-02
Phenylpropaniod biosynthesis	17	485	0.0021	2.9e-02
Plagosome	15	434	0.0043	4.3e-02
Plant-pathogen interaction	53	2909	0.0047	4.3e-02
Photosynthesis antenna proteins	4	43	0.0047	4.3e-02

Diterpenoid biosynthsis

00904 9/7/10 (c) Kanabiga Laboratories

Phenylpropaniod biosynthesis

Photosynthesis antenna proteins

00196 11/16/10 (c) Kanehisa Laboratories

Proteome research of vsp mutant

Different Protein spots between vsp and wild

48 protein spots were discovered and 18 were identified as significant, with 10 expressed or upregulated and 8 expressed or down-regulated in vsp with MALDI-TOF MS.

8 down-regulate proteins in vsp mutant

Spot NO+?	Protein name@	Accession.	Species	Ratio⊬	-
				CK/V₽	
16+	Rubisco large subunite	gi 1771188~	Leonia glycycarpa¢	30.03₽	4
22¢	Unknown₽	gi 255634578₽	Glycine max₽	4.11₽	4
298₽	Rubisco large subunite	gi 323690315₽	Priva cordifolia₽	2. 86 ₽	4
481₽	Rubisco large subunite	gi 30313565₽	Leptolaena multiflora₽	2.36₽	4
<mark>550</mark> ₽	Rubisco large subunite	gi 2342972₊⊃	Lespedeza cuneata«	2. 86 ₽	4
8₽	gibberellin 20-oxidase 1+	gi 74273629₽	Gossypium hirsutum«	10.31@	4
59 ₽	Rubisco large subunit-binding	gi 2506277₽	Gossypium hirsutum₽	4.87₽	4
	protein₀				
300₽	Rubisco large subunite	gi 326535361+	Gossypium arboreum.	5.50₽	ł

Rubisco large subunit, GA20-oxidase.

10 up-regulate proteins in vsp mutant

Spot NO+2	Protein name+3	Accession.	Species+2	Ratio	ς
				CK/V43	_
7₽	groes chaperonin₊ ²	gi 255550363₽	Ricinus communis₽	0.29₽	¢,
23₽	triosephosphate isomerase+?	gi 295687231₽	Gossypium hirsutum₽	0.31	4⊃
26₽	receptor kinase-like protein₊∂	gi 1122443₽	Oryza sativa₽	0.20₽	€¢
480⊷	20S proteasome subunit	gi 211906468⊷	Gossypium hirsutum₽	0.20+2	4⊃
	alpha-1∗				
47₽	cp10-like protein* ³	gi 21780187₽	Gossypium hirsutum₽	0.35₽	4⊃
15₽	Unknown* ³	gi 224286559₽	Picea sitchensis#	0.46₽	4⊃
177↩	S-adenosylmethionine	gi 307948774↩	Gossypium hirsutum₽	0.22*	€¢
	synthetase↔				
24~	chloroplast triose phosphate	gi 88770718↩	Rhodomonas salina@	0.31	¢
	isomerase+2				
13₽	nascent polypeptide associated	gi 1658271₽	Nicotiana tabacum₽	0.49₽	4⊃
	complex alpha chain↔				
436⊷	phosphoglycerate kinase*	gi 211906450₊⊃	Gossypium arboreum+ ²	0.43₽	¢

Receptor kinase, S-adenosyl-L-methionine synthetase, 20S proteasome subunit.

Summary

- *vsp* mutant is an new one and show earlier virescence and specific only to true leaves.
- plant height, number of bolls, boll weight, yield and fiber quality were significantly lower than wild type.
- Chlorophyll, carotenoid level and photo-chemical efficiency of vsp mutant true leaves were significantly lower.
- vsp mutant lacked grana in the thylakoids of the mesophyll cells at young leave stage.
- This indicated that chlorophyll and carotenoid levels were related with chloroplast structure.
- Down-regulate Rubisco large subunit and up-regulate protein kinases could cause to delay the chlorophyll synthosis.

Acknowledgements

- Supported by National
 High Technology Research
 development 863 Plan
 (2007AA100103).
- State Key Laboratory of Cotton Biology
- Earliness cotton breeding team in CCRI

- My boss: Shuxun Yu
- Students:
 - Mingshunag Tian Jiang bo Haijing Li Liu ji

Thank you for your attention

Welcome to CCRI

中棉所欢迎大家前往指导