Transcriptomic approaches for the identification of drought-responsive genes in cotton

Wonkeun Park^{1,2}, Joshua A. Udall³, Justin T. Page³, Megan Bowman¹, Philip J. Bauer¹, and B. Todd Campbell¹

¹ USDA-ARS, Florence, SC
 ² Clemson University
 ³ Brigham Young University

US Cotton Production

US Cotton Production

Drought in the Southeast US

Sandy soils

Hold 2.5 cm of water per 30.5 cm of soil

Variable precipitation
50% chance of 20
continuous days without
rain each season

Water Use in Relation to Plant Development

Goal: Improve the productivity of cotton under intermittent drought conditions

Research Approaches:

- Gene discovery
- Germplasm screening

Courtesy of Greg Constable, CSIRO

- Ability to maintain high levels of photosynthesis under water deficit

(Nepomuceno, Oosterhuis, and Stewart, 1998)

Courtesy of Greg Constable, CSIRO

Courtesy of Greg Constable, CSIRO

- Ability to maintain high levels of photosynthesis under water deficit

(Nepomuceno, Oosterhuis, and Stewart, 1998)

- 1. Osmotic adjustment
- 2. ROS protection
- 3. Ability to capture soil water

12 Total Samples

- 2 Water treatments
- 3 Biological replicates
- Root and leaf

12 Total Samples

- 2 Water treatments
- 3 Biological replicates
- Root and leaf

Physiological Traits

- Leaf water potential
- Root hydraulic conductance

Treatment	Plant	Leaf Water Potential (MPa)
	1	-1.60
Well-watered	2	-1.35
	3	-1.45
	1	-2.20
Rainfed	2	-2.70
	3	-2.85

12 Total Samples

- 2 Water treatments
- 3 Biological replicates
- Root and leaf

Treatment	Plant	Leaf Water Potential (MPa)	
	1	-1.60	
Well-watered	2	-1.35	
	3	-1.45	- 2.00
	1	-2.20	critical
Rainfed	2	-2.70	
	3	-2.85	

12 Total Samples

- 2 Water treatments
- 3 Biological replicates
- Root and leaf

Treatment	Plant	Leaf Water Potential (MPa)	
	1	-1.60	
Well-watered	2	-1.35	
	3	-1.45	- 2.00
	1	-2.20	critical
Rainfed	2	-2.70	
	3	-2.85	

12 Total Samples

- 2 Water treatments
- 3 Biological replicates
- Root and leaf

- No differences in root hydraulic conductance

Candidate Gene Discovery – RNA seq

Sequencing work flow

- Barcoded Illumina RNA TruSeq cDNA libraries (12)
- Quality and concentrations assessed with Agilent Bioanalyzer and qPCR
- Single lane of 50bp HiSeq

Candidate Gene Discovery – RNA seq

- Reads trimmed with sickle (Najoshi)
- Reads mapped to Gossypium raimondii 2.1 reference (Paterson) using GSNAP (Wu and Nacu, 2010)
- Reads categorized to A_T or D_T genome using polyCat (Page, Gingle, and Udall)

Bioconductor 2.10 DESeq (Anders and Huber, 2010) with 5% FDR

Candidate Gene Discovery – RNA seq

Approximate sequencing statistics

- 308 million reads
- 290 million trimmed reads
- 150 million mapped reads
- 148 million reads mapped to annotated genes
- 34,000 genes surveyed

Number of Genes Differentially Expressed In Response to Drought

Biological Replicate Variation

Leaf Heat Map

Root Heat Map

Number of Genes Differentially Expressed In Response to Drought

Sub-genome read categorization for root

Up-regulated genes

Total Genes	A _T both	D _T both	A _T drought, D _T wet	D _T drought, A _T wet	A _T only	D _T only	Non e
913	407	315	72	74	2	3	40
	44.6%	34.5%	7.9%	8.1%	0.2%	0.3%	4.4%

Down-regulated genes

Total Genes	A _T both	D _T both	A _T drought, D _T wet	D _T drought, A _T wet	A _T only	D _T only	Non e
617	225	217	50	54	5	5	61
	36.5%	35.2%	8.1%	8.8%	0.8%	0.8%	9.9%

High expression level

Top 10 based of read count								
	Well-		Fold					
Gene ID	watered	Rainfed	Change	P-Value	Annotation			
Gorai.004G128700	17186	39930	2.32	0.004	Starch Synthase			
Gorai.006G169400	11640	2704	4.30	0.035	H+/oligopeptide symporter			
Gorai.013G238000	11321	23950	2.12	0.028	Ring Finger and Zinc Finger Domain			
Gorai.006G011500	10795	46055	4.27	0.000	Phosphorylase			
Gorai.005G113800	9732	34082	3.50	0.000	Amylase			
Gorai.006G223900	9429	20020	2.12	0.021	Adenosylhomocysteinase			
Gorai.011G083000	6983	17025	2.44	0.003	Phospholipase			
Gorai.009G187700	5855	14651	2.50	0.003	Farnesoic acid 0-methyl transferase			
Gorai.009G218000	5701	2601	2.19	0.010	Subtilisin/Kexin-Related Serine Protease			
Gorai.005G244900	5647	25095	4.44	0.000	Sugar-1-Phosphate Guanyl Transferase			

Large fold change

Top 10 based on fold change and p-value								
			Fold					
Gene ID	Well-watered	Rainfed	Change	P-Value	Annotation			
Gorai.001G024200	122	1	117.88	4E-09	Polyketide cyclase / dehydrase and lipid transport			
Gorai.005G238000	2	164	102.03	3E-03	Ethylene-responsive transcription factor ERF109-like			
Gorai.011G250800	1595	27	58.54	3E-05	26S proteasome regulatory complex			
Gorai.006G073600	1	52	39.74	9E-10	Glycosyl hydrolase family			
Gorai.009G207100	14	0	39.70	2E-02	Cytochrome P450			
Gorai.007G145000	55	2	34.57	3E-02	Triose-phosphate Transporter			
Gorai.011G251800	74	2	32.41	2E-12	26S proteasome regulatory complex			
Gorai.002G078800	1	22	30.93	2E-04	Receptor-like protein kinase			
Gorai.008G231800	1	19	30.70	5E-04	Phosphate-transporter related			
Gorai.006G021000	18	1	29.32	7E-04	Serine-Threonine protein kinase			

Low expression level

Bottom 10 based on read count								
			Fold					
Gene ID	Well-watered	Rainfed	Change	P-Value	Annotation			
Gorai.002G023500	76	180	2.3	0.048	Long-chain acyl-CoA transporter, ABC superfamily			
Gorai.009G053200	1303	514	2.5	0.048	Serine-Threonine protein kinase			
Gorai.003G023600	29	4	6.5	0.048	Cytochrome P450			
Gorai.009G177900	639	1278	2.0	0.049	Mannosyl-3-phosphoglycerate phosphatase			
Gorai.002G234400	1508	754	2.0	0.049	CCAAT-binding transcription factor			
Gorai.005G216600	137	292	2.1	0.049	Sugar Transporter			
Gorai.001G252800	64	16	3.9	0.049	AP2 transcription factor activity			
Gorai.009G340400	3	18	7.0	0.049	Serine-Threonine protein kinase			
Gorai.004G090000	345	719	2.1	0.049	UDP-glucose 4-epimerase			
Gorai.005G081200	82	25	3.3	0.050	Serine-Threonine protein kinase			

Small fold change

		Bottom	10 based	fold change	and p-value
	Well-		Fold		
Gene ID	watered	Rainfed	Change	P-Value	Annotation
Gorai.004G183400	2187	4426	2.0	0.043	Trehalose-6-Phosphate Synthase
Gorai.002G098400	996	492	2.0	0.040	Serine O-acetyltransferase
Gorai.010G155900	1573	3162	2.0	0.046	AP2 transcription factor activity
Gorai.002G083100	3886	7794	2.0	0.044	Ubiquitin
Gorai.002G234400	1508	754	2.0	0.049	CCAAT-binding transcription factor
Gorai.009G177900	639	1278	2.0	0.049	Mannosyl-3-phosphoglycerate phosphatase
Gorai.013G216000	2630	5257	2.0	0.042	Protease M17 Leucine Aminopeptidase
Gorai.002G191700	1000	502	2.0	0.041	Kelch-related proteins
Gorai.007G188400	2413	4784	2.0	0.045	UTPglucose-1-phosphate uridylyltransferase
Gorai.005G027000	2804	5519	2.0	0.034	56kDa Selenium binding protein (SBP56)

Some Observations

- More transcriptome changes in roots
- Higher error variation in leaf

Some Observations

- More transcriptome changes in roots
- Higher error variation in leaf

- Osmotic adjustment
- ROS protection
- Ability to capture soil water?

Where Are We Going??

RT-qPCR validation

Where Are We Going??

- RT-qPCR validation
- Narrow candidate genes for future study

Where Are We Going??

- RT-qPCR validation
- Narrow candidate genes for future study
- Mine naturally occurring genetic variation

