

Using GreenSeeker® to Drive Variable Rate Application of Nitrogen, PGRs and Defoliants on Cotton

George Vellidis

The University of Georgia

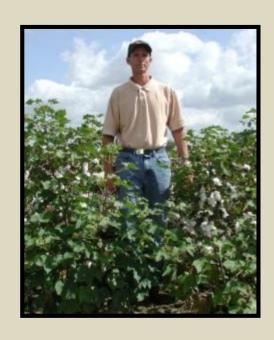
Research Partners

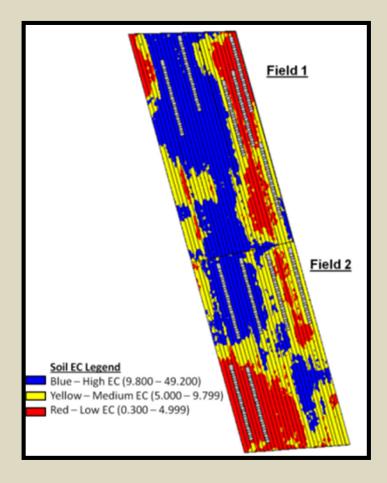
University of Georgia

- Dr. Glen Harris
- Mr. Herman Henry
- Mr. Rodney Hill
- Mr. Calvin Perry
- Dr. Glen Ritchie
- Ms. Heather Savelle

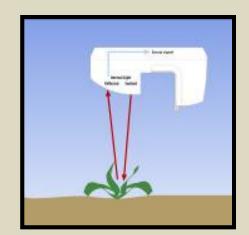
Mr. Sergio Villagran

Financial Support


- Georgia Cotton
 Commission
- Cotton, Inc.



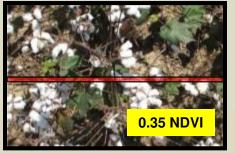
Why VRA in Georgia Cotton?


GreenSeeker®

- Generates light at two wavelengths
 - Red and NIR
 - measures the light reflected from the plants
- Reflectance used to calculate NDVI

- NDVI = Normalized Difference Vegetative Index
 - Most common Vegetative Index

$$NDVI = \frac{NIR_{reflectance} - Red_{reflectance}}{NIR_{reflectance} + Red_{reflectance}}$$

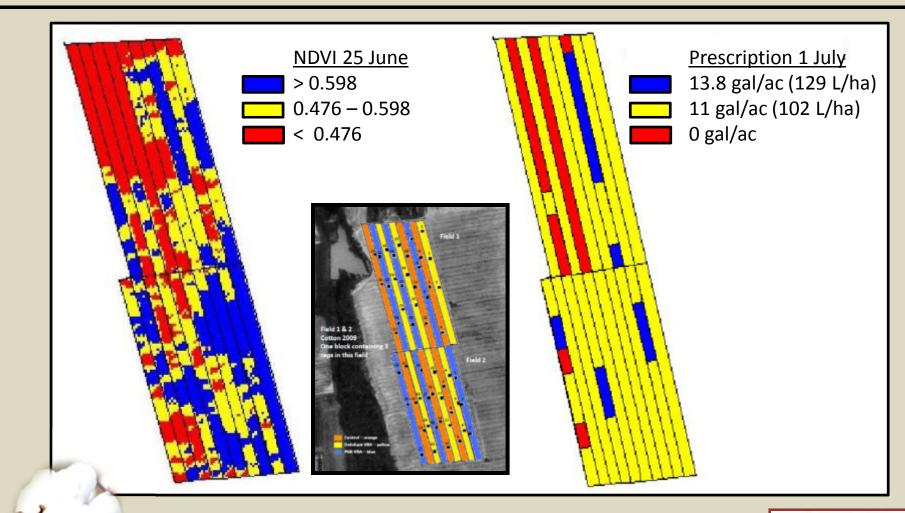


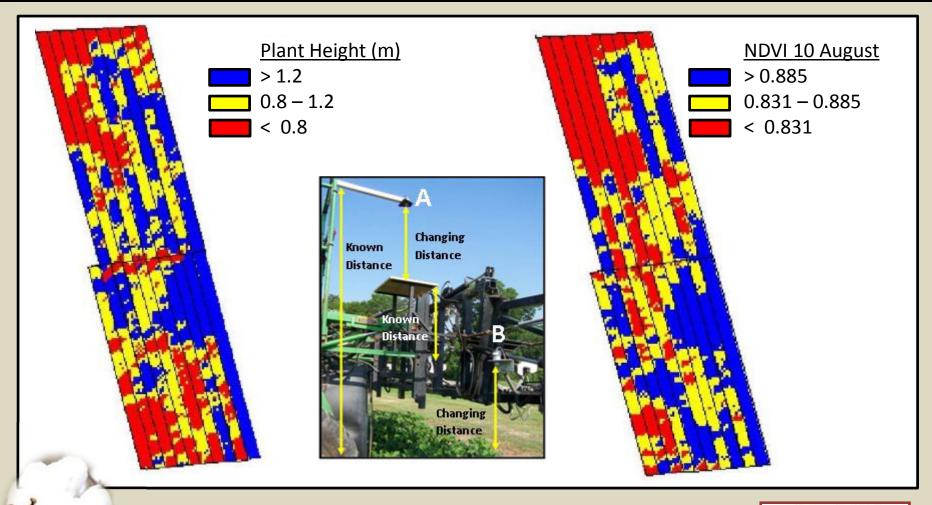
GreenSeeker® Sensors "look" straight over row/crop and NDVI values change based upon size and vigor of crop.

NDVI Mapping

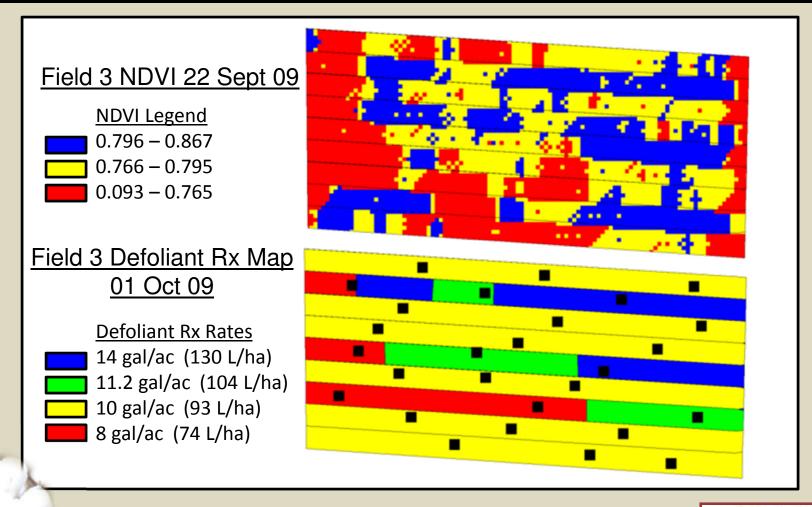
- GreenSeeker® RT200 six-sensor system
- Trimble ® DGPS

VRA of PGRs and Defoliant

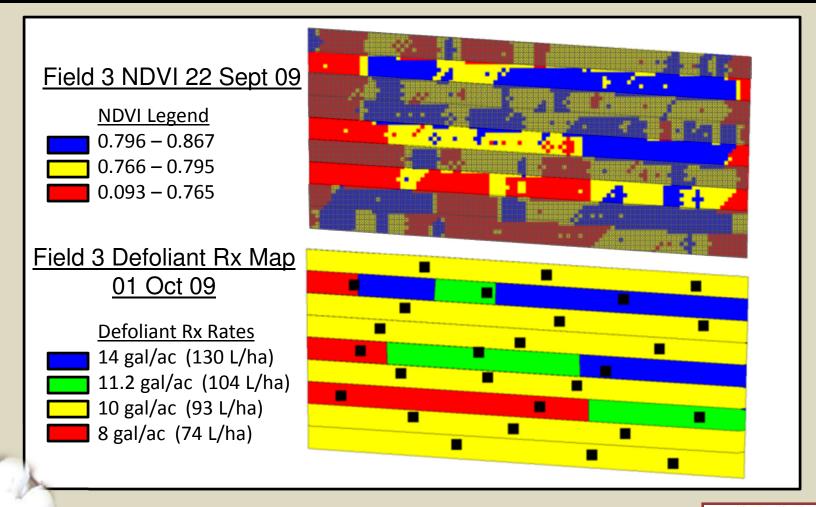

MidTech Legacy[®] variable rate controller



PGR NDVI Maps



PGR NDVI Maps



Defoliant Prescription Maps

NDVI & Prescription Maps

PGR Comparisons – Uniform vs VRA

Difference in Volume Used:

July 1: 14% less/acre

July 24: 6.5% less/acre

August 11: 1% less/acre

Season Total: 7% less/acre

PGR Cost Difference per Acre:

Field 1&2:

Uniform rate: \$1.62/ac (\$4/ha)

VRA rate: \$1.48/acre (\$3.7/ha)

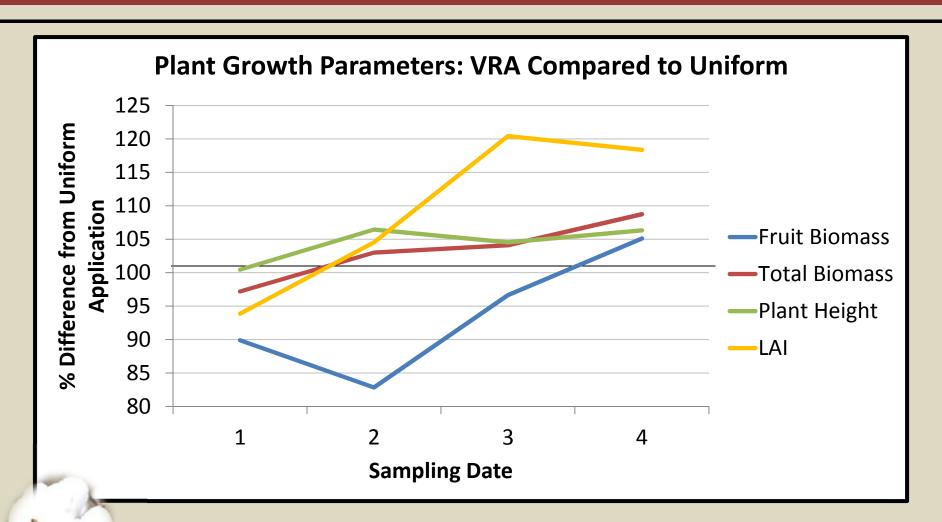
Uniform - VRA: +\$0.14/ac (\$0.35/ha)

Field 3:

Uniform rate: \$1.62/ac (\$4/ha)

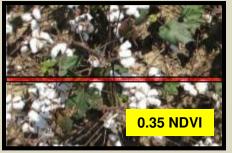
VRA rate: \$1.53/ac (\$3.8'ha)

Unifrom - VRA: +\$0.10/ac (\$0.25/ha)


Average Difference: +\$0.12/ac (\$0.30/ac)

* + indicates net gain as a result of using VRA

PGR Results



GreenSeeker® Sensors "look" straight over row/crop and NDVI values change based upon size and vigor of crop.

Defoliation Formulations

Uniform Rate	Prep	Dropp	Folex
Fields 1, 2, 3	32	2	6
	(oz/ac)	(oz/ac)	(oz/ac)

Fields 1&2	Prep (oz/ac)	Dropp (oz/ac)	Folex (oz/ac)
High (100%) 14 gal/ac	32	2.4	10
Med (71.4%) 10 gal/ac	22.9	1.7	7.1
Low (57.1%) 8 gal/ac	18.3	1.4	5.7

Field 3	Prep (oz/ac)	Dropp (oz/ac)	Folex (oz/ac)
High (100%) 14 gal/ac	32	2	8
Med (80%) 11.2 gal/ac	25.6	1.6	6.4
Low (57.1%) 8 gal/ac	18.3	1.1	4.6

Defoliation Results

Plant Growth Parameters: PGR vs. Uniform

LAI

Uniform rate: 98% reduction

VRA: 96% reduction

Leaf Biomass

- Uniform rate: 97.8% reduction

VRA: 95% reduction

Boll Opening

	% Bolls Opened Between Defoliation and Harvest (14 days)					
Field	VRA Pre					
	High	Medium	Low	Uniform Prep Rate		
Field 1	-	71%	70%	82%		
Field 2	55%	80%	44%	83%		
Field 3	62%	42%	70%	66%		

Defoliation Cost Comparison

Draduct	Uniform	VRA Applic	VRA Application (\$/ac)		rence (RA) (\$/ac)
Product	Application (\$/ac)	Field 1&2 Field 3		Field 1&2	Field 3
Dropp	\$2.70	\$2.28	\$2.15	+\$0.42*	+\$0.55
Folex	\$2.87	\$3.42	\$3.08	-\$0.55	-\$0.21
Prep	\$6.19	\$4.44	\$4.98	+\$1.75	+\$1.21

^{* +} indicates net gain as a result of using VRA

Difference in Volume of Product Used

Dropp: 17% less/acre

Folex: 15% more/acre

Prep: 25% less/acre

<u>Difference in Cost (Uniform – VRA)</u>

Fields 1&2: +\$1.62/ac (\$4/ha)

Field 3: +\$1.55/ac (\$3.8/ha)

Average: +\$1.58/ac (\$6.2/ha)

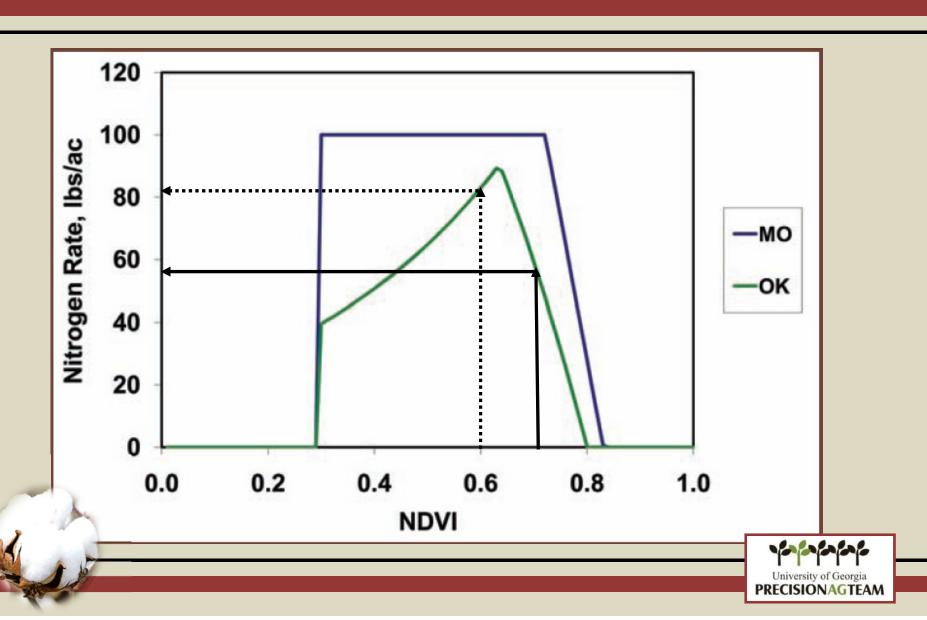
Cost Comparison

Products	Difference in Cost (VRA – Uniform) (\$/ac)		
	Field 1&2	Field 3	
PGR	+\$0.14	+\$0.10	
Defoliants	+\$1.62	+\$1.55	
TOTAL	+\$1.76	+\$1.65	

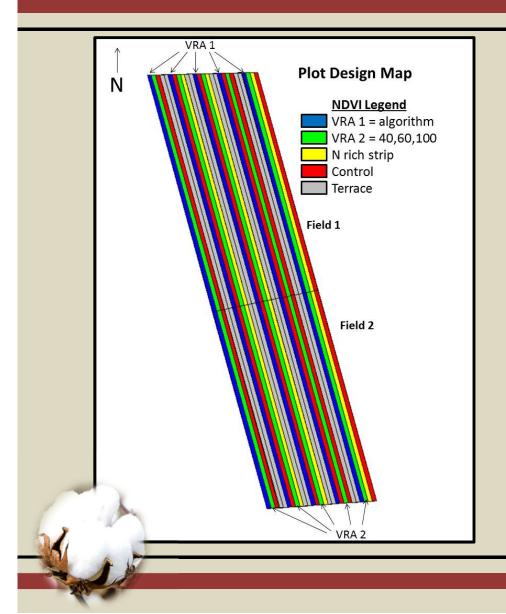
Production Application:

- Average Difference = +\$1.71/ac
- Savings on 2000 acres = \$3420
- Cost of GreenSeeker = \$15,000

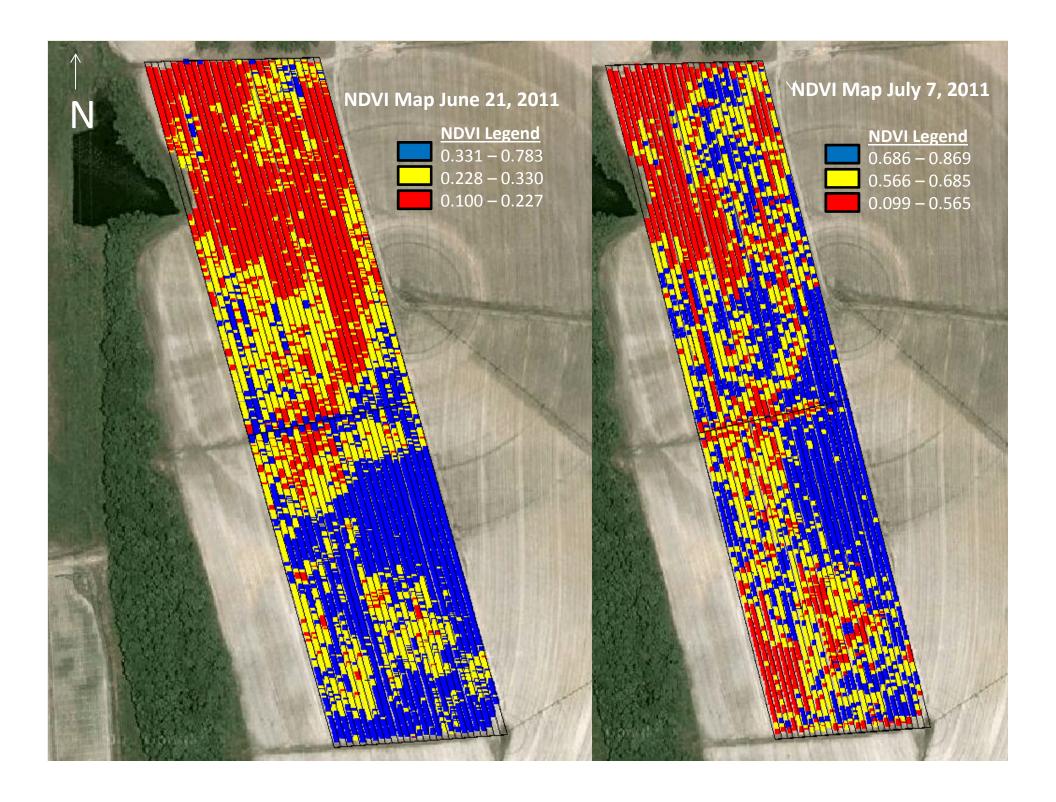
Pay for Technology in less than 5 years



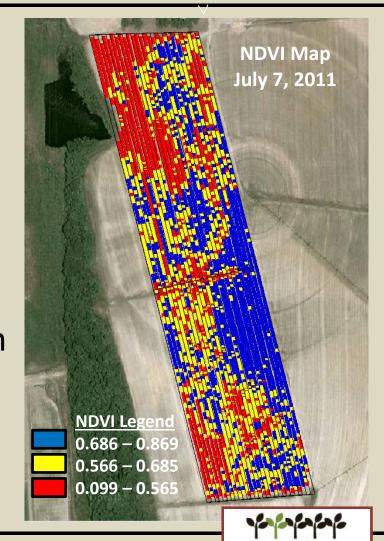
Nitrogen Use in Georgia

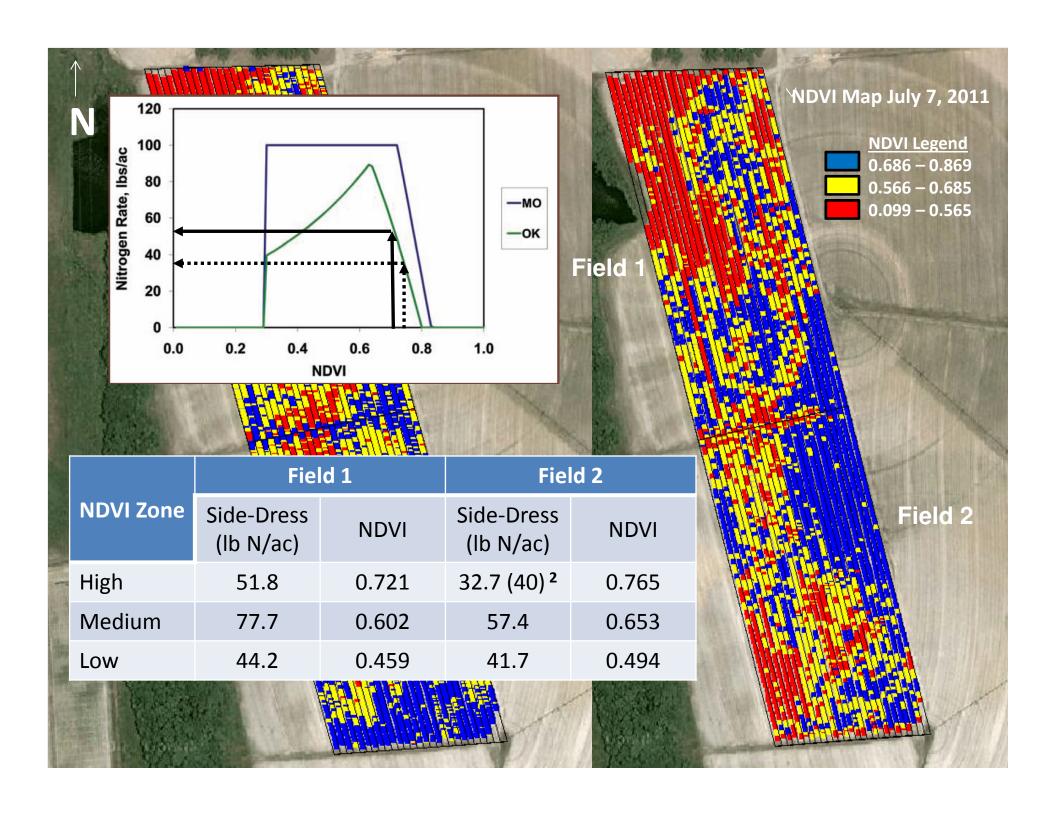

- Most important fertilizer used in cotton
- Most difficult to manage
- Low rates → reduce yield and quality
- Excessive N → rank growth, boll rot, delayed maturity, poor quality and yield
- Recommended in GA: 105 lb/ac (117 kg/ha)
 - 25 lb/ac at pre-plant or at planting (28 kg/ha)
 - 80 lb/ac side-dress (90 kg/ha)

OK State / Clemson Algorithm


N-Rich Strips

- 105 lb N/ac applied
 08 June 2011
- 28% liquid N





Prescription Maps

- Based on 07 July NDVI map
 - Use NDVI to assess yield potential
 - N-rich strips not effective
- Two VRA treatments
 - OK State / Clemson algorithm applied to each field
 - User-selected rates

PRECISIONAGTEAM

Applying Side-Dress N

 Capstan® variable rate system driven by an Ag Leader® Insight variable rate controller

OK State / Clemson Algorithm

VRA Treatment 1 (5 strips in each field)

	Fie	ld 1	Field 2		
NDVI Zone	Side-Dre	ss N Rate	Side-Dress N Rate		
	(lb/ac) (gal/ac) ¹		(lb/ac)	(gal/ac)	
High	51.8	17.3	32.7 (40) ²	13.4	
Medium	77.7	25.9	57.4	19.1	
Low	44.2	14.7	41.7	13.9	
Control	85	28.3	85	28.3	

¹ 28% liquid N

² Algorithm calculated 32.7 lb N/ac but we overrode and applied 40 lb N/ac

User Selected Rates

VRA Treatment 2 (5 strips in each field)

	Fie	ld 1	Field 2		
NDVI Zone	Side-Dress N Rate		Side-Dress N Rate		
	(lb/ac) (gal/ac) ¹		(lb/ac)	(gal/ac)	
High	100	33.4	100	33.4	
Medium	60	20	60	20	
Low	40	13.4	40	13.4	
Control	85	28.3	85	28.3	

¹ 28% liquid N

2011 Results

- No significant differences in tissue sample N concentration prior to side-dress application
- Strips harvested with 4-row cotton picker equipped with Ag Leader yield monitor
- Significant differences in yields of treatments

2011 Yield Results

NDVI Zone	Fie	ld 1	Field 2		
	Side-Dress N Rate	Average Yield	Side-Dress N Rate	Average Yield	
	(lb/ac) (lb/ac)		(lb/ac)	(lb/ac)	
VRA 1	44, 78, 52 ¹	3031	42, 57, 40 ¹	3032	
VRA 2	40, 60, 100¹	2920	40, 60, 100¹	3330	
Control	85	2849	85	3361	
N-Rich	85²	2782	85²	3309	

¹ Rates for Low, Medium, High NDVI zones. N applied July 7.

² Applied June 8.

Prescription Prescription Field 1 NDVI Field 2 Prescription

183.5 (L/ha), VRA 2 156.3 (L/ha), VRA 1 135.8 (L/ha), VRA 2 114.4 (L/ha), VRA 1

	Yield	Soil ECa (mS/m)			As Applied	Return ¹	Difference ²
Treatment	(lb/ac)	0-30 cm	0-90 cm	NDVI	N (gal/ac)	(\$/ac)	(\$/ac)
Fld 1 VRA1	3078	9.40	21.39	0.738	22.0	874	+48
Fld 1 Control	2940	8.37	14.28	0.756	25.2	826	-
Fld 1 VRA2	3125	10.88	18.19	0.762	28.9	873	+47
Fld 2 VRA1	2593	6.33	12.51	0.714	19.9	340	+71
Fld 2 Control	2752	7.98	16.28	0.729	25.3	269	-
Fld 2 VRA2	2499	5.84	12.81	0.710	26.6	164	-105

0.712 - 0.768

¹ Return = Yield × Lint Price – N Cost; ² Difference = Control - VRA

Conclusions

VRA on cotton has great potential for improving efficiency

 N-rich strips do not work in Georgia because of preplant fertilizer

 Non-uniform management can distort NDVI data leading to inaccurate prescriptions

