PRECISION AG/NEMATODE MANAGEMENT IN S. C.

- South Carolina
 - Ahmad Khalilian
 - Will Henderson
 - John Mueller

- Current Coop.
 - Terry Kirkpatrick
 - Scott Monfort
- OthersAl Wrather

A typical production field in the Southeastern Coastal Plain

Sandy Loam

Sand

Sandy Clay Loam

COTTON THRESHOLDS

Species	Nematodes/100cm ³		
	Low	High	
Root-knot	100	250	
Reniform	250	625	
Lance	75	190	

COTTON THRESHOLDS

Low Threshold

High Threshold

5 to 6 lbs/acre Temik 15G at planting

or Avicta

3.0 gals/acre Telone II preplant +3 - 5 lbs Temik 15G at planting

or 5 lbs Temik 15G at planting + 5 lbs Temik 15G side dressed or Vydate CLV

or Rotation

4 Farms – 214 Fields

< Threshold

31%

At low threshold

32%

> High Threshold

37%

Primarily Columbia lance and Root-knot Nematodes

NEMATODE DISTRIBUTION

Distribution is determined by:

Soil texture
Soil chemical properties
Host distribution

"NEW TOOLS"

AVAILABLE
G.I.S./G.P.S.
S.E.C.M.

NEEDED
 Variable rate applicator for Temik 15G
 Variable rate applicator for Telone II

OBJECTIVE

- Determine (predict) for each grid:
 Nematode density
 Yield potential
 - Soil textureParticle sizepH

Columbia Lance Nematode

Soil texture, especially % sand may be the most important factor in determining the distribution of individual nematode species.

Soil electrical conductivity correlates strongly to soil particle size and texture.

Determine the potential for predicting nematode distribution and density using soil electrical conductivity.

Soil Electrical Conductivity Map (top 12 in.) Youngblood Farm

Effects of moisture & temperature on soil EC

Effects of Soil Texture on Columbia Lance Nematode Youngblood Farm

Effects of Soil Texture on Columbia Lance Nematode at Harvest Bamberg Farm

Objective 2

To develop a variable-rate applicator for Telone II & Temik 15G.

Objective 3

To determine the accuracy of the variable-rate application systems.

Targeted Telone II Rate

Variable-Rate Telone II Application Equipment Uniformity Test

(Ethle) 40]•	Mea	sured				age O or = - 2	
30		1:1 I	_ine	1			% Er	ror
9 20	-					Row	Max.	Ave.
_	-					1	- 6.7	- 3.3
						2	5.5	0.5
01 Measured	0	10	20	30	40	3	- 6.7	- 3.5
	Targ	jeted	rate	(liter/	ha)	4	5.3	- 1.9

Variable-Rate Temik 15G Application Equipment Uniformity Test

Objective 4

To compare efficacy of variable-rate vs. uniform-rate nematicide application.

Rates Compared

Treatment	Temik (lbs/A)	Telone (gal./A)
STD Temik	6.0	0.0
VAR Temik	3.0 to 7.0	0.0
STD Telone	3.0	3.0
Var. Telone	3.0	0.0 to 3.0
Control	0.0	0.0

Variable Rate Nematicide Application Guidelines			
Temik 15 G	Columbia lance		
(Ibs/A)	per 100 ml soil		
3.0	Less than 51		
5.0	51 to 125		
7.0	More than 125		

Variable Rate Nematicide Application Guidelines		
Telone II (gal/A)	Columbia lance per 100 ml soil	
0.0	Less than 51	
18.7	51 to 125	
28.0	125 to 200	
37.4	More than 200	

Effects of variable-rate nematicide application on lint yield and chemical use

Treatment	Temik	Telone	Lint yield
	(Ibs/A)	(gal/A)	(lbs/A)
Sta. Temik	6.0	0.0	650
Var. Temik	4.0	0.0	687
Sta. Telone	3.0	3.0	663
Var. Telone	3.0	0.6	696
Control	0.0	0.0	566

Conclusions

- Var.-rate Temik system resulted in 5% higher yield and 34% lower nematicide usage compared to single rate.
- Var.-rate Telone increased lint yield by 5% with 78% reduction in nematicide usage compared to single rate.

WHERE TO GO??

- CLN was easy, direct relation of % sand to nematode density (size matters).
- \diamond Distribution = damage.
- Immense variation in a field. Easy to i.d. where to put Telone II.
- Columbia lance is a "strong pathogen"
- Columbia lance particle size is possibly not an issue.
- Problems will come in "mixture" fields.

Root-knot & reniform

Much weaker pathogens on a unit basis
Distribution does not = damage
Rely more on stress
Particle size more important??
Will need data on interaction of
Yield potential * nematode density
How to predict density or stress??

NEW GRANT FOR SC & AR

Demonstration of Site-Specific Nematicide Placement in Cotton for Water Quality Enhancement, Higher Lint Yields, and Increased Farm Profits.

3 year grant to work with growers to promote the use of site specific application technology.

Arkansas

Investigators: Terry Kirkpatrick, Scott Monfort, and Andy Mauromoustakos

Interrelationship of soil texture and root-knot nematode on yield.

Spatial Data Evaluation

Field divided into 4 soil-texture classes:

1.) 0-30 % Sand
 2.) 31-45 % Sand
 3.) 46-60 % Sand
 4.) > 60 % Sand

Within Soil classes - plot data averaged based on Telone application:

1.) 0
 2.) 1.5 gal.
 3.) 3.0 gal.
 4.) 4.5 gal.

