Oklahoma State University

Optical Sensor Cotton Experiences

Wesley M. Porter

(Wesley.Porter@OKState.edu),

Dr. Brian Arnall, Dr. Randy Taylor, Shane Osborne

Current Studies

- Delayed Fertilization Study
- Regional Yield Prediction (Y_P) Equations
- PGR's and Harvest Aids (boll openers and defoliants)
- New Equipment

Delayed Fertilization

- Delayed Fertilization Study:
 - Causes a deficiency in the plant for a more visible recovery. Pre-plant rates of 0, 30, 60, and 90 lbs./ac were used. All treatments were brought to a total of 120 lbs./ac.
 - N was applied at Pin Head Square, White Flower and 30 days after White Flower stages.
 - The best correlations have been found up to the first
 White Flower stage but not beyond it.

Delayed Fertilization (North Central OK)

Trt	Prep-pLant	Sidedress	Growth stage of	Lint Yield	t Grouping
	kg N ha ⁻¹	kg N ha-1	Sidedress N Application	kg ha -1	Alpha 0.05
1	0	0		1060.68	Α
2	60	0		975.40	Α
3	120	0		828.96	Α
4	0	120	Early pinhead square	1049.47	Α
5	0	120	White flower	1052.41	Α
6	0	120	30 days after white flower	1137.86	Α
7	30	90	Early pinhead square	973.78	Α
8	30	90	White flower	966.93	Α
9	30	90	30 days after white flower	1002.11	Α
10	60	60	Early pinhead square	1146.48	Α
11	60	60	White flower	925.11	Α
12	60	60	30 days after white flower	1109.17	Α
13	90	30	Early pinhead square	982.56	Α
14	90	30	White flower	1089.08	Α
15	90	30	30 days after white flower	1182.15	Α

Delayed Fertilization (SW OK)

Trt	Prep-pLant	Sidedress	Growth stage of	Lint Yield	t Grouping
122	kg N ha ⁻¹	kg N ha-1	Sidedress N Application	kg ha-1	Alpha 0.05
1	0	0		759.53	F
2	60	0		1276.39	D,E
3	120	0		1517.11	A, B, C
4	0	120	Early pinhead square	1652.61	А
5	0	120	White flower	1449.78	В,С
6	0	120	30 days after white flower	823.44	F
7	30	90	Early pinhead square	1568.30	A, B, C
8	30	90	White flower	1604.84	A, B
9	30	90	30 days after white flower	1124.63	E
10	60	60	Early pinhead square	1460.16	B, C
11	60	60	White flower	1529.57	A, B, C
12	60	60	30 days after white flower	1276.88	D,E
13	90	30	Early pinhead square	1496.70	A, B, C
14	90	30	White flower	1538.86	A, B, C
15	90	30	30 days after white flower	1421.31	C, D

Delayed Fertilization

Figure 1. Nitrogen applied Kg ha⁻¹ and timing of application. Pre-plant (Pre), Early pinhead square (PHS), White Flower (WF), and 30 days after white flower (AWF).

^{*} Significance measured for each group of three treatments, not all 15 together. Treatments with no significant difference at an alpha of 0.05 reported with same letter.

Regional Y_P Equation Differences

• Two locations were used in OK, Altus and a site near Lake Carl Blackwell.

Yield Prediction

Yield Prediction Models

Response Index

Regional Y_P Equations Differences

The two areas of OK being used are different in many ways, thus causing a difference in the yield prediction equations:

- Climate
- Irrigation
- Soil

Using NDVI as a Predictor of Cotton Plant Height for Real-Time Sensor-Based Variable Rate Application of Growth Regulators

A special thanks to the cooperators from University of Tennessee: Chris Main and Owen Gwathmey

Data Collection

- NDVI recorded with a hand held GreenSeeker sensor
- Height measured at the same time
- Measurements taken over the growing season

Normalizing Data

- Since data were collected from two diverse geographic regions and across multiple years (growing conditions), we looked for a means to normalize the data.
- The expectation from normalizing data was that we would have a more robust prescription.
- Days after planting and cumulative heat units were used to normalize NDVI data.

Plant Height vs NDVI

Plant Height vs NDVI/DAP

Plant Height vs NDVI/CHU

NDVI vs Time

Height vs NDVI (DAP<60)

Summary

- NDVI was a good indicator of cotton plant height until plants reached 24 inches (about 60 DAP)
- After height exceeded 24 inches the sensor field of view is all plant.
- Normalization techniques showed no improvement.

Using NDVI as a Predictor of Cotton Plant Parameters such as Node Above Cracked Boll (NACB) and % Open Boll for Real-Time Sensor-Based Variable Rate Application of Harvest Aids

Data Collection

- NDVI was recorded at various plant stages along within multiple studies.
- NACB and %Open Boll data were collected at various locations throughout the plots during growing years of 2007-2010

NACB

NACB 2007-2010

AGRICULTURE

% Open Boll

% Open 2007-2010

Treatments

 Specific Plots were dedicated to developing an initial prescription equation for harvest aid applications.

Trt No.	Product	Initial Log Rate	Timing (Maturity)
1	Finish 6 Pro	96 oz/A	40%
	Def 6	64 oz/A	Open Bolls
2	Finish 6 Pro	96 oz/A	70%
	Def 6	64 oz/A	Open Bolls
3	Finish 6 Pro	96 oz/A	100%
	Def 6	64 oz/A	Open Bolls

NDVI vs. Logarithmic Defoliation

Initial Results

- A relationship between NDVI and NACB and an inverse relationship between NDVI and % Open Boll.
- An initial prescription equation can be formed from the data collected

New Equipment

