

Utilizing Multiple Precision AG Practices to Reduce Costs and/or Maximize Profits

Cotton Inc. Crop Management Seminar Nov. 12, 2008

Topics

- Which technologies are right for me?
- How do I make it happen?
- Does all of this technology really work?
- Is there any way to make this easier?
- What is the ultimate goal?

Soil Fertility Management

Grid sampling

- 10, 5, 2.5, 1 acre grid?
- Interpolates/estimates values between sample points
- Zone sampling
 - Field is divided into zones (EC or bare soil imagery)
 - Each zone is treated as an individual field

Management Zones

- Provide Guides for soil sampling
- Identify "Fields within Fields"
- Track productivity or profitability of any subset of the field

In-season fertility management

- Directed tissue and/or soil sampling
- Aerial imagery
 - Directs where to collect tissue or soil samples
 - Relies heavily on ground truthing
 - Limited by clouds
- On-the-go sensors
 - Measure reflectance data and simultaneously vary the rates
 - Relies heavily on algorithms
 - Not limited by clouds

Making it happen

- Hardware needs
 - Consultant/Service provider
 - GPS, handheld computer, computer
 - Fertilizer applicator
 - GPS, VR controller
- Software needs
 - GIS software
 - Mapping and soil sampling capability
 - Ability to import data to make management zones
 - Ability to write and export prescriptions to any VR controller

Making it happen

- Committing the time and resources
- Realizing that there will be setbacks!!

Does this really work?

- Yes and NO
- Lower fertilizer costs inhibit ability to work
- Higher fertilizer cost enhance opportunities

Field A

2004 Straight Rate

- Grower Standard 20 Gal/ Acre of 11-37-0
- Fertilizer Cost \$1.34/Gal for Total of \$26.72/Acre
- Yield 1,327# Lint/Acre

- 2006 Variable Rate
- 11-27-0-7 + 1 Gal/Acre Hydra Hume
- Average Rate per Acre = 14.7 Gal/Ac
- Fertilizer Cost \$1.35/Gal + Hydra-Hume @ \$5.00/Gal for a Total of \$24.85/Acre
- Total Fertilizer Cost in 2004 Dollars was \$22.79
- Yield 1,387# Lint/Acre

People...Products...Knowledge...

Comparision

- \$950/ton DAP;
 \$575/Ton 0-0-60
- Rice-
 - 100 lbs DAP
 - <mark>– 150</mark> lbs 0-0-60
- Cost per acre 80 acre field
 - \$47.50 for DAP
 - \$43.00 for 0-0-60
- \$90.50/ A

- Hyground-zone sampling
- Rice-
 - 45 lbs DAP
 - 180 lbs 0-0-60
- Cost per acre

 \$22.00 for DAP
 \$51.75 for 0-0-60
 \$73.75/A

Scout Map from Aug. 2004

88.04 lbs N

71.08 lbs N

84.28 lbs N

The 2006 samples Showed that the N Levels ranged from 55.4 to 73.6 lbs of Available N.

RX Map

RX Rate

Nitrate

As-Applied Map

Results

Leaf Tissue N: Peak Bloom Class 3: 4.05% N Class 4: 4.34% N Class 5: 5.43% N

(Bell et al., 2003 Crop Science)

DP 432 RR

2004 Yield- 1333 lbs/A 2005 Yield- 1253 lbs/A

Is there any way to make this easier??

- Obstacles
 - Substantial investment for hardware and software
 - Taking the time to learn software
 - Getting results in a format that is usable
- Possibilities
 - Relationships with larger service providers
 - Allows for consultant to do field work
 - Service provider does computer processing
 - Consultant makes agronomic decisions from the results

Where are we headed

 Would tying yield maps and record keeping data to fertility management be useful??

