Lessons Learned from Irrigation Pump Monitoring in the Midsouth

Chris Henry, Ph.D., P.E. Assistant Professor and Water Management Engineer

> Merritt McDougal Graduate Research Assistant

Dennis Carmen White River Irrigation District

> Contact Information: E-mail: cghenry@uark.edu Office: 870-673-2661

Top 4 States in Quantity of Water Applied for Irrigation (Million ac-ft)

How much ground water does Arkansas use?

7.2 *billion* gallons/day

Total Water Use by Sector in Arkansas

Agriculture consumes 90% of consumptive water use Total water withdraws : 20% surface water 80% groundwater Mississippi River Valley Alluvial Aquifer

Wells 50-150 ft deep, 300-2,500 gpm production sand and gravel composition

7,049 MGD withdraw annually Only 42.4% is sustainable

RESEARCH & EXTENSION University of Arkansas System

Sparta/Memphis Aquifer

100-1,000 feet deep 100-500 gpm Sand, silt and clay composition

> 187 MGD withdrawn annually Only 46.5% is sustainable

Irrigation Pump Monitors

- Industrial automation for agriculture.
- Provides producer with information regarding individual pumping plant operation (1 hour data reported).
- Allows for remote control operation using cell phone modem or wireless 802.11g connectivity through web-based interface.
- Tracks energy and water use over time.
- Product being developed for White River Irrigation District through Diesel Engine Motors Inc (dieselenginemotor.com).
- NRCS cost share available through the Mississippi River Basin Initiative (MRBI).
- Cost is about \$7,000 for diesel and \$4,000 for electric (but don't quote me on this).

A variety of Flow meters have been used and tested for flow measurement.

Calibration using propeller meters or portable ultrasonic flow meters

Surface water creates challenges not experienced in groundwater based irrigation systems.

Pressure sensors can be used to monitor system, leaks, set changes, pumping plant performance

Sonic depth sensor

- Uses laser so acquire a distance to the surface of the water from the sensor.
- Allows the producer to have a close estimate of the depth of the reservoir or other irrigation source.
- Uses a programmed benchmark level and a simple mathematical formula to calculate depth and present a value to the monitor box.

Depth Sensors provide ditch elevations for TDH, monitoring water supply, and pumping plant performance for surface water relifts. Can be used to automate pumping. Unfortunately well depth is rarely available for submersibles and vertical turbines.

Precipitation data is provide via specially designed rain gages suitable for the agricultural irrigation environment.

Current meters have been used measure energy consumption

HE BALL POUGH DISTORT

ବଚ୍ଛିତ୍^ତ

3 6

日二

GROUND

Remote Control and operation of pumps is possible through solenoids

A variety of attempts have been made to measure fuel flow to high accuracy. However, this has yet to be accomplished to satisfaction. Internet Camera provides user with visual image of irrigation progress, pump operation, and crop.

Connectivity

• Cellular modems and wireless 802.11 can be used to push data to web server.

AGRICULTURE

University of Arkansas System

SION

Internet Screenshot

Tu On	irn Off	• Location	Pump		Water Flow	Line Pressure	Air 12V Pow Temperature Supply		Sensor Voltage	Channel2	Channel4	Channel5	Channel6	Digital2	Digital3	Digital4
					0.00	13.10	0.00	3.50	5.30	0.00	0.00	0.00	0.00	0.00	0.00	0
		-B5 Reservoir	Off	GA	Annual Efficiency: 71.47%		Kwh Used: 1926.36		Cost per Acre Ft: \$2.57							
Tu On	irn Off	[•] Location	Location Pump Water Line 12V Powe Flow Pressure Supply		12V Power Supply	Sensor Voltage	Air Temperature	Channel2	Channel4	Channel5	Channel6	Digital2	Digital3	Digital4		
					0.00	99.90	12.10	12.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
		-B6 Reservoir	Off	^G A	Annual Effici	iency: 46.66%	Kwh Used: 3691	1.34	Cost per Acre Ft: \$3.27							
Tu On	Irn Off	Location	Pump		Water Flow	Line Pressure	Reservoir Air Temperatu		12V Power Supply	Sensor Voltage	Channel2	Channel4	Channel5	Digital2	Digital3	Digital4
		-Bearskin C14 Reservoir	Status		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
			Unknown	^G A	Annual Effici	iency: 63.37%	Kwh Used: 765.	88	Cost per Acre Ft: \$8.07							
Tu On	Irn Off	Location	Location Pump		Water Flow	Line Pressure	12V Power Supply	Sensor Voltage	Channel1	Channel2	Channel4	Channel5	Channel6	Digital2	Digital3	Digital4
		-Bearskin Cole Reservoir IN	Status		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
			Unknown	^G A	Annual Effici	iency: 0.00% Kwh Used: 0.00			Cost per Acre Ft: 0							
Tu On	Irn Off	• Location	Pump		Water Flow	Line PSI	Air Temp	12V Power Supply	Sensor Voltage	Channel2	Channel4	Channel5	Channel6	Digital2	Digital3	Digital4
		5 Oaks Electric			10097.00	3.50	0.00	12.10	11.30	0.00	0.00	0.00	0.00	0.00	0.00	0
			On (R)	^G A	Annual Effici	iency: 0.00%	Kwh Used: 0.00		Cost per Acre Ft: 0							
Tu On	irn Off	Location	Pump		Water GPM	Line Pressure	Rain Fall	12V Power Supply	Sensor Voltage	Channel1	Channel2	Channel4	Channel5	Channel6	Digital2	Digital3
			Status		0.00	0.00	0.550	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		94 Tyler Bros 11	Unknown	^G A	Annual Effici	iency: 23.91%	Kwh Used: 9638	3.87	Cost per Acre Ft: \$6.04							

Screen shot of Diesel Engine Motors website, which provides real time data and power up/shut down ability to the farmer. All data collected can be exported to Microsoft Excel directly from the website.

Pumping Plant Monitoring Alluvial Well, electric, 160 ac Field 14-18 (NE Arkansas)

Total Water Delivered: **396.7** Acre-Ft. Total Power Used: 36,240 kWh Seasonal Delivery Cost: \$8.27/Acre-Ft. Operational Time: 981 hrs. Maximum Flow: 2,490 GPM (6/9/2011) Minimum Flow: 1,720 GPM (8/28/2011) Start of Irrigation: 6/9/2011 End of Irrigation: 8/28/2011 Average Flow: 2,147 GPM Power Cost: \$3,260 (\$0.09/kWh) Flow Decrease: ~30% (18.6 GPM/Operational Day) Cost Increase: ~41.3% (\$0.48/Operational Week)

DIVISION OF AGRICULTUR RESEARCH & EXTENSION University of Arkansas System

Pumping Plant Monitoring Field 14-18 (NE AR) Alluvial Well, electric

Water Pumped

Pumping Plant Monitoring Field 14-18

Delivery Cost

Pumping Plant Monitoring Sparta Deep Well (Central AR) Multiple crops

Total Water Delivered: 272 Acre-Ft. Total Power Used: 139,900 kWh Seasonal Delivery Cost: \$47.66/Acre-Ft. Operational Time: 1,307 hrs. Maximum Flow: **GPM 1,440 (6/6/2011)** Minimum Flow: **GPM 910 (8/7/2011)** Start of Irrigation: 6/6/2011 End of Irrigation: 8/9/2011 Average Flow: 1,105 GPM Power Cost: \$12,600 (\$0.09/kWh) Flow Decrease: ~29% (7.6 GPM/Operational Day) Cost Increase: ~28-37% (\$1.81/Operational Week)

DIVISION OF AGRICULTURI RESEARCH & EXTENSION University of Arkansas System

Pumping Plant Monitoring Central, AR

Flow Delivery

Pumping Plant Monitoring Central AR

Delivery Cost

Initial Drawdown

- In most cases, flow loss is most rapid at the beginning of an irrigation set and most extreme during the first irrigation set of the season.
- This initial flow decline is a result of the development of a cone of depression within the alluvial aquifer.
- Flow often exhibits exponential decline for the first 24-48 hours of irrigation. This is not always the case, with flow sometimes showing linear decline throughout the season.
- This seasonal trend for many pumping plants (15-30% flow decline) is important to realize for irrigation system design and management.

Initial Drawdown Analysis

- Graph above of flow delivery over time exhibits exponential decline in flow rate at the beginning of each set. The slope is most extreme during the first irrigation set as the cone of depression is developed.
- In this example, the flow declines 12% from the original reading (1929 GPM) over the first 48 hours of irrigation.

Initial Drawdown Analysis

Flow Delivery

- Drawdown is not as significant as other wells.
- Electric pump well Central AR

Pumping plant performance testing

Gran

Hitting the "sweet spot" on the pump curve may be a moving target.

Could a Pump Monitor Optimize Performance during the season?

YES!

General Trends from the Data

- Surface Water Re-lifts
 \$5-\$8/ac-ft
- Shallow alluvial wells
 - \$10-\$15/ac-ft in NE AR
 - \$20-\$25 /ac-ft in Central AR
 - 20-30% flow reductions over growing season
- Deep Wells
 - \$40-\$45/ac-ft
 - -5% -30% flow reductions

Load Management Programs

- Program uses automated switch system to perform pumping plant shutdowns (said to be 3 hours) in order to cut power use during peak use periods.
- Producer receives approximately 30% discount on energy bill in return for allowing utility to shut down pumps on demand.

Load Management Case Study

- 160 ac field
- Electric Pump, shallow well (35' depth)
- Utility promises shutdowns are not more than 3 hours.
- 30% discount
- \$0.09/kWh power cost
- What is the impact on annual water use?
- How much downtime does the pump really have?
- Pump monitored was on load management, compared to scenario where pump was not on load management (assumed pump ran during shutdown periods with filled-in data).

Load Management Case Study

Assuming No Shutdowns Water Delivered 452.4 Acre-Ft (34 ac-in) Power Used: **53,801 kWh** Power Cost: \$4,825.00 Power Cost: \$4,634.00 Operational Time: 1,284 hrs.

On shutdown days there is an application difference of 0.07 in/dy

Current Peak Load Program

Water pumped: 431.6 Acre-Ft. (32.3 ac-in) Estimated Loss: 20.8 Acre-Ft. (5%) (1.56 ac-in) Power Used: 51,490 kWh Estimated Savings: \$1,581 (30% or \$10/ac) Total Expenditure: \$3,244.00 Operational Time: 1,219 hrs Total Shutdown Time: 65 hrs. Number of Shutdowns: 21 Average Shutdown Duration: **3.1 hrs.** Max Shutdown Duration: **3.9 hrs. (twice)**

How does this flow dynamic during the season impact poly pipe?

PHAUCET Existing Field Design														
File Edit Design Type of Pipe Input Screen Crown Profile Soils and Furrow Rcommendation Editor Help														
1 [2] 문 [윤 [윤] 윤 [윤] · · · · · · · · · · · · · · · · · ·														
Name:					GP	M: 2490	Locat	ion 📃						Gross Applied (in.) Hours Days
. .														
Date: 11-06-2012 Target Head (it): 2 Enter Rod Readings or Elevations (R or E): E 1.0 7.3 .3 1.5 10.9 .5														
Acadia Sil Recommended Furrow Flow = 10 GPM Average Furrow Flow = 4.7 1.0 1.0 1.0 2.0 14.5 .6														
,	3.0 21.8 .9													
Distrib	Distribution Uniformity = 90.3													
											Planted	Re-Calculate	4	
			Eurrow			Furrow		Number of Holes			Width Between	Complete	_	
Station	Hole Dia.	Hole	Flow	Head	Flow	Length	Elevation	per		Pipe	Watered	Design		Stations Hole Diameter Number of Holes
(Feet)	(Inches)	Number	(GPM)	(feet)	Ratio	(feet)	(feet)	Furrow	Mil	Diameter	Furrows			0-1320 172 529
	1/2	2	5.97	3.50	1.27	1320	10.00	1	10	15	2.50	Highest Head		
5	1/2	3	5.95	3.43	1.27	1320	10.00	1	10	15	2.50	3.50		
	1/2	4	5.95	3.47	1.26	1320	10.00	1	10	15	2.50	Max Head Station		
10	1/2	5	5.94	3.46	1.26	1320	10.00	1	10	15	2.50	0		
13	1/2	6	5.93	3.45	1.26	1320	10.00	1	10	15	2.50			
15	1/2	7	5.92	3.44	1.26	1320	10.00	1	10	15	2.50	Lowest Head		
18	1/2	8	5.91	3.43	1.26	1320	10.00	1	10	15	2.50			
20	1/2	9	5.90	3.42	1.25	1320	10.00	1	10	15	2.50	Low Head Station		ASHOW
23	1/2	10	5.89	3.41	1.25	1320	10.00	1	10	15	2.50	1318		1
23	1/2	12	5.88	3.40	1.25	1320	10.00	1	10	15	2.50	Max. Furrow Flow		decreases, time to
30	1/2	13	5.87	3.38	1.25	1320	10.00	1	10	15	2.50	5.97		
33	1/2	14	5.86	3.37	1.24	1320	10.00	1	10	15	2.50	Min. Furrow Flow		irrigate field
35	1/2	15	5.85	3.36	1.24	1320	10.00	1	10	15	2.50	4.24		
38	1/2	16	5.84	3.35	1.24	1320	10.00	1	10	15	2.50	Calculated GPM		increases
40	1/2	17	5.83	3.34	1.24	1320	10.00	1	10	15	2.50	2489		1110108505
43	1/2	18	5.83	3.33	1.24	1320	10.00	1	10	15	2.50			
45	1/2	19	5.82	3.33	1.24	1320	10.00	1	10	15	2.50			
50	1/2	20	5.80	3.32	1.23	1320	10.00	1	10	15	2.50			
53	1/2	22	5.79	3.30	1.23	1320	10.00	1	10	15	2.50			
55	1/2	23	5.79	3.29	1.23	1320	10.00	1	10	15	2.50			
58	1/2	24	5.78	3.28	1.23	1320	10.00	1	10	15	2.50			
60	1/2	25	5.77	3.27	1.23	1320	10.00	1	10	15	2.50		-	

Eile Edit Design Type of Pipe Input Screen Crown Profile Solits and Furrow Reommendation Editor Help	🧎 PHAU	ICET Existi	ng Field I	Design									and the second second		
Image: Control Acres = 40.0 Name: Control Acres = 40.0 Date: 11:06:2012 Target Head (II): 2 Enter Rod Readings or Elevations (R or E): E Acada Si Target Head (II): 2 Enter Rod Readings or Elevations (R or E): E E Distribution Uniformity = 89.8 Recommended Funow Flow = 10 GPM Average Funow Flow = 3.3 3 10 15 22 21 9 30 31.6 1.3 Station Uniformity = 89.8 Funow MI Dianeter Funows Planted Weenee Watered Units (C)	<u>F</u> ile <u>E</u> d	lit D <u>e</u> sign	Type o	f Pipe 🛛 🧎	Input Scre	een Cr	rown Prot	file Soils	and Furro	w Rc	ommend	ation Editor	<u>H</u> elp		
Name: GPM: 1720 Location Date: 11:06:2012 Target Head (R) 2 Enter Rod Readings or Elevations (R or E); E Acadia Si Recommended Furrow Flow = 10 GPM Average Furrow Flow = 3.3 10:5 5.3 2.4 Distribution Uniformity = 89.8 Recommended Furrow Flow = 10 GPM Average Furrow Flow = 3.3 Recommended Furrow Flow = 10 GPM Recommended Furrow Flow = 3.3 Recommended Furrow Flow = 10 GPM Recommended Furrow Flow = 3.3 Station Hole Dia Hole Dia Flow Length Elevation Pice Vidth Distribution Furrow Furrow Flow = 10 GPM Number Vidth Station: Total Station:	0 😂		3 - 3 3		3			To	tal Acres	= 40.	.0				
Date: Target Head (ft): 2 Enter Rod Readings or Elevations (R or E): E Acadia Si Precommended Furrow Flow = 10 GPM Average Furrow Flow = 3.3 Distribution Uniformity = 89.8 Station Hole Dis Hole Furrow How = 10 GPM Average Furrow Flow = 3.3 O 1/2 A clave Design O Number of Hole Dis Hole Dia Active Design O Number of Hole Dis Hole Dia Active Design O Number of Hole Dia Merce O Number of Hole Dia Merce Furrow Mil Diameter Furrows Mil Diameter Furrow Mil Diameter Colspan="2">Colspan="2" Number of Hole Dia Merce Sector Colspan="2" Adverage Furrow Mil Diameter Fire	Name:					GP	M: 1720	Loca	tion 🛛						Gross Applied (in.) Hours Days
Acadia Sil Recommended Furrow Flow = 10 GPM Average Furrow Flow = 3.3 Distribution Uniformity = 89.8 Image: Comparison of the comparison	Date:	11-06-2012	2		Targe	et Head (ft): 2	Enter	Rod Read	ings o	r Elevation	ns (RorE): E	_		1.0 10.5 .4
Distribution Uniformity = 89.8 Station Hole Dia, Hole Dia, (Feet) Hole Dia, Hole Dia,	Acadia Sil 1.5 1.8 .7 Acadia Sil Recommended Furrow Flow = 10 GPM Average Furrow Flow = 3.3 2.0 21 .9												<u> </u>		
Station Hole Dia (Feet) Hole Dia (Feet) <td colspan="12">3.0 31.6 1.3</td>	3.0 31.6 1.3														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Station (Feet)	Hole Dia. (Inches)	Hole Number	Furrow Flow (GPM)	Head (feet)	Flow Ratio	Furrow Length (feet)	Elevation (feet)	Number of Holes per Furrow	MiL	Pipe Diameter	Planted Width Between Watered Furrows	(Re-Calculate) Complete Design		Active Design Stations Hole Diameter Number of Holes 0 - 1320 1/2 529
3 1/2 2 4.16 1.70 1.28 1320 10.00 1 10 15 2.50 5 1/2 3 4.15 1.70 1.28 1320 10.00 1 10 15 2.50 8 1/2 4 4.15 1.69 1.28 1320 10.00 1 10 15 2.50 10 1/2 5 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 13 1/2 6 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 15 1/2 7 4.13 1.68 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 23 1/2 10 4.11 1.66 1.28 1320 10.00 1 10 15 2.50 24 1/2 13 </td <td>0</td> <td>1/2</td> <td>1</td> <td>4.17</td> <td>1.71</td> <td>1.28</td> <td>1320</td> <td>10.00</td> <td>1</td> <td>10</td> <td>15</td> <td>2.50</td> <td>Liebert Lierd</td> <td></td> <td></td>	0	1/2	1	4.17	1.71	1.28	1320	10.00	1	10	15	2.50	Liebert Lierd		
5 1/2 3 4.15 1.70 1.28 1320 10.00 1 10 15 2.50 8 1/2 4 4.15 1.69 1.28 1320 10.00 1 10 15 2.50 10 1/2 5 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 13 1/2 6 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 15 1/2 7 4.13 1.68 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 25 1/2 10 4.11 1.66 1.26 1320 10.00 1 10 15 2.50 25 1/2 11 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 33 1/2 14	3	1/2	2	4.16	1.70	1.28	1320	10.00	1	10	15	2.50	1 71		
8 1/2 4 4.15 1.69 1.28 1320 10.00 1 10 15 2.50 10 1/2 5 4.14 1.69 1.27 1320 10.00 1 10 15 2.50 13 1/2 6 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 15 1/2 7 4.13 1.68 1.27 1320 10.00 1 10 15 2.50 18 1/2 8 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.66 1.28 1320 10.00 1 10 15 2.50 25 1/2 11 4.10 1.66 1.28 1320 10.00 1 10 15 2.50 30 1/2 12 4.10 1.64 1.26 1320 10.00 1 10 15 2.50 33 1/2 1	5	1/2	3	4.15	1.70	1.28	1320	10.00	1	10	15	2.50			
10 1/2 5 4.14 1.69 1.27 1320 10.00 1 10 15 2.50 13 1/2 6 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 15 1/2 7 4.13 1.68 1.27 1320 10.00 1 10 15 2.50 18 1/2 8 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 23 1/2 10 4.11 1.66 1.26 1320 10.00 1 10 15 2.50 25 1/2 11 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 30 1/2 13 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 33 1/2 <td< th=""><th>8</th><th>1/2</th><th>4</th><th>4.15</th><th>1.69</th><th>1.28</th><th>1320</th><th>10.00</th><th>1</th><th>10</th><th>15</th><th>2.50</th><th>Max Head Station</th><th></th><th></th></td<>	8	1/2	4	4.15	1.69	1.28	1320	10.00	1	10	15	2.50	Max Head Station		
13 1/2 6 4.14 1.68 1.27 1320 10.00 1 10 15 2.50 15 1/2 7 4.13 1.68 1.27 1320 10.00 1 10 15 2.50 18 1/2 8 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 23 1/2 10 4.11 1.66 1.26 1320 10.00 1 10 15 2.50 28 1/2 12 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 33 1/2 14 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 38 1/2 <th< th=""><th>10</th><th>1/2</th><th>5</th><th>4.14</th><th>1.69</th><th>1.27</th><th>1320</th><th>10.00</th><th>1</th><th>10</th><th>15</th><th>2.50</th><th>0</th><th></th><th></th></th<>	10	1/2	5	4.14	1.69	1.27	1320	10.00	1	10	15	2.50	0		
15 172 7 4.13 1.88 127 1320 10.00 1 10 15 2.30 18 1/2 8 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 23 1/2 10 4.11 1.66 1.26 1320 10.00 1 10 15 2.50 25 1/2 11 4.10 1.66 1.26 1320 10.00 1 10 15 2.50 28 1/2 12 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 30 1/2 13 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 33 1/2 14 4.09 1.64 1.25 1320 10.00 1 10 15 2.50 38 1/2 <t< th=""><th>13</th><th>1/2</th><th>6</th><th>4.14</th><th>1.68</th><th>1.27</th><th>1320</th><th>10.00</th><th>1</th><th>10</th><th>15</th><th>2.50</th><th>Lowest Head</th><th></th><th></th></t<>	13	1/2	6	4.14	1.68	1.27	1320	10.00	1	10	15	2.50	Lowest Head		
18 172 6 4.12 1.87 1.22 1320 10.00 1 10 13 2.30 20 1/2 9 4.12 1.67 1.27 1320 10.00 1 10 15 2.50 23 1/2 10 4.11 1.66 1.26 1320 10.00 1 10 15 2.50 25 1/2 11 4.10 1.66 1.26 1320 10.00 1 10 15 2.50 28 1/2 12 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 30 1/2 13 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 33 1/2 14 4.09 1.64 1.25 1320 10.00 1 10 15 2.50 38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 38 1/2	10	1/2		4.13	1.68	1.27	1320	10.00	1	10	15	2.50	.83		
28 1/2 3 4.12 1.07 1.24 1.320 10.00 1 10 13 2.36 </th <th>20</th> <th>1/2</th> <th></th> <th>4.12</th> <th>1.67</th> <th>1.27</th> <th>1320</th> <th>10.00</th> <th>1</th> <th>10</th> <th>15</th> <th>2.50</th> <th>Low Head Station</th> <th></th> <th>Designing for</th>	20	1/2		4.12	1.67	1.27	1320	10.00	1	10	15	2.50	Low Head Station		Designing for
25 112 10 111 100 100 1 100 150 2.500 1000 100 100 150 2.500 1000 100 100 150 2.500 1000 100 150 2.500 1000 100 150 2.500 1700 1000 100	23	1/2		4.12	1.66	1.26	1320	10.00	1	10	15	2.50	1320		
28 1/2 12 4.10 1.65 1.26 1320 10.00 1 10 15 2.50 30 1/2 13 4.09 1.65 1.26 1320 10.00 1 10 15 2.50 33 1/2 14 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 35 1/2 15 4.08 1.64 1.25 1320 10.00 1 10 15 2.50 38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 40 1/2 17 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 120 10.00 1 10 15 2.50 2.91 120 10.00 1 10 15 2.50 120 120 10.00	25	1/2	11	4.10	1.66	1.26	1320	10.00	1	10	15	2.50	1020		lower flow
30 1/2 13 4.09 1.65 1.26 1320 10.00 1 10 15 2.50 33 1/2 14 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 35 1/2 15 4.08 1.64 1.25 1320 10.00 1 10 15 2.50 38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 40 1/2 17 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 2.91 3.91	28	1/2	12	4.10	1.65	1.26	1320	10.00	1	10	15	2.50	Max. Furrow Flow		
33 1/2 14 4.09 1.64 1.26 1320 10.00 1 10 15 2.50 35 1/2 15 4.08 1.64 1.25 1320 10.00 1 10 15 2.50 2.91 <t< td=""><td>30</td><td>1/2</td><td>13</td><td>4.09</td><td>1.65</td><td>1.26</td><td>1320</td><td>10.00</td><td>1</td><td>10</td><td>15</td><td>2.50</td><td>4.17</td><td></td><td>14 • 1</td></t<>	30	1/2	13	4.09	1.65	1.26	1320	10.00	1	10	15	2.50	4.17		14 • 1
35 1/2 15 4.08 1.64 1.25 1320 10.00 1 10 15 2.50 2.91 38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 Calculated GPM Calculated GPM Application times	33	1/2	14	4.09	1.64	1.26	1320	10.00	1	10	15	2.50	Min. Furrow Flow		results in longer
38 1/2 16 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 40 1/2 17 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 Calculated GPM application times	35	1/2	15	4.08	1.64	1.25	1320	10.00	1	10	15	2.50	2.91		8
40 1/2 17 4.07 1.63 1.25 1320 10.00 1 10 15 2.50 Calculated of M application times	38	1/2	16	4.07	1.63	1.25	1320	10.00	1	10	15	2.50	Calculated GPM		annlication times
	40	1/2	17	4.07	1.63	1.25	1320	10.00	1	10	15	2.50	1720		application times
43 1/2 18 4.06 1.62 1.25 1.320 10.00 1 10 15 2.50	43	1/2	18	4.06	1.62	1.25	1320	10.00	1	10	15	2.50	1720		on 1
45 1/2 19 4.06 1.62 1.25 1320 10.00 1 10 15 2.50 Or less	45	1/2	19	4.06	1.62	1.25	1320	10.00	1	10	15	2.50			or less
	48	1/2	20	4.05	1.61	1.25	1320	10.00	1	10	15	2.50			
50 1/2 21 4.04 1.61 1.24 1.320 10.00 1 10 15 2.50 annlication denth	50	1/2	21	4.04	1.61	1.24	1320	10.00	1		15	2.50			application denth
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	1/2	22	4.04	1.60	1.24	1320	10.00	1	10	15	2.50			approation acpti
55 1/2 23 4.03 1.60 1.24 1320 10.00 1 10 15 2.50	55	1/2	23	4.03	1.60	1.24	1320	10.00		10	15	2.50			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	80	1/2	24	4.03	1.53	1.24	1320	10.00	1	10	15	2.00		_	

Ever feel like you just can't keep up at the end of the season?

15

10

University of Arkansas System

4.02

1.59

1320

10.00

A possible solution is to use a Variable Frequency Drive to provide constant flow

- Constant pressure and vary pump flow rates
- Full motor torque across all speed ranges
- > 10 hp motors on single phase power
- More energy efficient
- Soft start and reduces demand charges

Flow Delivery

Why use a Pump Monitor?

- There are many commercial products available with a wide range of prices and capabilities.
- May be able to reduce trips to the field checking irrigation equipment through remote control capability.
- Monitoring pump performance could lead to an indication of pump/bowl maintenance needs.
- To reduce water consumption, must first know how much is being used. Benefit of conservation measures.
- Water use data is very valuable for reservoir sizing.
- Advance sensors and soil moisture sensors can be integrated to assist and possibly automate irrigation decisions.
- LA and TX have pumping plant evaluation programs.

Take Home Message

- Pump monitors will likely be a valuable tool for growers to improve irrigation efficiency and management of water resources.
- In-season flow reduction and increased irrigation cost is significant. How can we use this information to improve water conservation and profitability?
- Initial drawdown on some wells could be significant especially if flow measurement for irrigation systems design or performance is being used.
- Energy savings from load management are substantial for growers, yet participation is low.

This work was funded by the Arkansas Soybean Promotion Board