COTMAN OVERVIEW

Dan Fromme Assistant Professor & Extension Agronomist Department of Soil and Crop Sciences Texas AgriLife Extension Service Texas A&M University System

Nothing magic about COTMAN

↗Does not predict yield

↗Does not give "Cookbook" recipes for production

↗Is not a cure all for cotton production problems

COTMAN Components

7SQUAREMAN

Monitors crop from 1st squares to 1st flowerss

⊅BOLLMAN (NAWF)

Monitors crop from 1st flowers to cutout

COTMAN Components

SQUAREMAN

Before 1st Flowers

➢Fruit retention

➢Pace of crop growth

Pre-flower Stress

BOLLMAN

After 1st flowers ➢ Boll Loading Stress
➢ Crop termination
➢ Insecticides
➢ Irrigation
➢ Defoliation

Plant Development

COTMAN is based on the following assumptions:

Planting to 1st squares in 35 days

Squaring Node Development

Every 2.7 days a new sympodial node on the main-stem.

Flowers at 60 days after planting

From 1st Squares to 1st Flowers

- Squaring node every2.7 days
- 9.25 squaring nodes at the time of the first flowers

Pace of Crop Development

After first flowers, boll loading stress will reduce the pace of squaring node accumulation
Flowers will *move up* the plant

Crop Carrying Capacity

The boll load that slows terminal growth and the production of new squares to zero.

304050607080Days after planting

1st Flowers to Cutout

Physiological Cutout at 80 DAP
 5 squaring nodes above the first position white flowers (NAWF = 5)

Target Development Curve

Target Development Curve

Crop growth VS. TDC

Shows growth status of your crop compared to a STANDARD
 Identify stress
 Use crop monitoring to improve decision-making

Nodes Above First Square/White Flower

Field Setup (1 time per season)

FIELD SETUP

- ↗ Acreage
- **7** Planting Date
- **7** Cultivar
- **7** Row Spacing
- **7** Re-plant (Y/N)
- **↗** FN
- → Stand count

SQUAREMAN Data

Start at PHS (Usually node 5-6).

Collect weekly.
 4 areas/field.
 Plant Height
 SQUAREMAP

SQUAREMAN Crop Growth Curve: Early Development

SQUAREMAN Crop Growth Curve: Flat Slope

SQUAREMAN Crop Growth Curve: Steep Slope after Slow Start

TDC 4

Maturity

Key to better end-of-season management is an accurate in-season measure of maturity.

Standard measures of maturity

>% open bolls>NACB

Require us to "guess" about which boll population is the last one we can pick

COTMAN removes "GUESSING" from end-of-season management

- Defines the Last Effective boll population:
- **↗** % boll retention
- Contribution to yield
- ↗ Plant development
- → Weather data

Boll Retention

Flower Power

Contribution of Lint Yield Above NAWF= 5, 4, and 3 Texas Upper Gulf Coast

BOLLMAN Data (NAWF)

- ↗ Collected once per week
- → Start at first flower
- Count # of nodes above white flower.
- Get 5 counts from 1 row and 5 from adjacent row.
- Repeat at 4 locations in the field.

BOLLMAN Data (NAWF)

 Stop counting at the last unfurled leaf in the plant terminal. (BE CONSISTENT)

Collect NAWF data until cutout (NAWF = 5).

CUTOUT

Use COTMAN to identify cutout:

→ Physiological (Crop)

∧ Seasonal (Weather)

Cutout

Physiological cutout

Cutout based on crop development (carrying capacity) - No end-of-season weather restraints

NAWF = 5 prior to latest possible cutout date. (Bourland et al. 1992)

↗Cutout at 80 DAP.

Cutout Con't.

Seasonal cutout:

∧ Natural cutout restricted due to weather

Crop development limited by end-of-season weather constraints (Zhang et al. 1994).
 NAWF = 5 AFTER the latest possible cutout date

Cutout

• From NAWF=5

- Heat unit calculations begin
 - Historical weather file
 - Actual or current

Are Bolls Safe from Insect Attack?

350 HU's after flower: Bollworm ➢Tobacco Budworm ► Boll weevil >Lygus species 450 HU's for: Stink Bugs

Bagwell & Tugwell, 1992, 1994, Harris 1998, Teague & Tugwell 2001

Are Bolls Safe from Insect Attack?

500-550 HU's after flower:
➢ Fall Armyworm
650 HU's for:
➢ Defoliating insects

Bagwell & Tugwell, 1992, 1994, Harris 1998, Teague & Tugwell 2001

COTMAN (End-of-Season)

∧NAWF = 5 is the last effective boll population
(Weather considerations)

7350 HU's and bolls resist insect penetration

7Cutout + 350 HU's = no more spraying

End of Season Management (Crop Susceptibility to fruit feeding insects)

≯Identify last effective boll population. (NAWF)

↗Track heat unit accumulation.

Stop spraying for:
 Bollworm
 Tobacco Budworm
 Boll weevil
 Plant Bugs

End of Season Management (Irrigation)

- ↗Identify last effective boll population. (NAWF)
- ↗Track heat unit accumulation.

Terminate irrigation.
 7350-400 DD60's for North Arkansas
 7400-450 DD60's for Central Arkansas
 7450-500 DD60's for South Arkansas

End of Season Management (Defoliation)

- ↗Identify last effective boll population. (NAWF)
- ↗Track heat unit accumulation.
- **7**850 DD60's start evaluating defoliation.

On-Target Fruit Development Rate, Physiological Cutout

SQUAREMAN on Target, Rapid Decline in Nodes-Above-White-Flower

TDC 7

Slow Square Development, Low Nodes at First Flower, Delayed Cutout

TDC 15

Overall Average – Insecticide Reduction Effects

Time Requirements

Approximately 20 minutes per field
Reduce time for insect scouts
Two different crews

COTMAN.TAMU.EDU

Thank You

