COTMAN OVERVIEW

Dan Fromme
Assistant Professor & Extension Agronomist
Department of Soil and Crop Sciences
Texas AgriLife Extension Service
Texas A&M University System
Nothing magic about COTMAN

- Does not predict yield
- Does not give “Cookbook” recipes for production
- Is not a cure all for cotton production problems
COTMAN Components

ממשלה SQUAREMAN

Monitors crop from 1st squares to 1st flowers

BOLLMAN (NAWF)

Monitors crop from 1st flowers to cutout
COTMAN Components

SQUAREMAN
Before 1st Flowers
- Fruit retention
- Pace of crop growth
- Pre-flower Stress

BOLLMAN
After 1st flowers
- Boll Loading Stress
- Crop termination
- Insecticides
- Irrigation
- Defoliation
Plant Development

COTMAN is based on the following assumptions:

- Planting to 1st squares in 35 days
Squaring Node Development

Every 2.7 days a new sympodial node on the main-stem.
Flowers at 60 days after planting

1st Squares to 1st flowers in 25 days
From 1st Squares to 1st Flowers

- Squaring node every 2.7 days
- 9.25 squaring nodes at the time of the first flowers
After first flowers, boll loading stress will reduce the pace of squaring node accumulation.
Flowers will *move up* the plant.
Crop Carrying Capacity

The boll load that slows terminal growth and the production of new squares to zero.
1st Flowers to Cutout

- Physiological Cutout at 80 DAP
- 5 squaring nodes above the first position white flowers (NAWF = 5)
Target Development Curve

Days after planting

Squaring Nodes

Tar
aget Develo
g
Tar
aget Develo
g

9
10
6
7
8
4
5
2
3
1
1
0

30 40 50 60 70 80 90

60
70
80
90
Target Development Curve

Days After Planting

NAFS/NAWF

0 1 2 3 4 5 6 7 8 9 10

30 40 50 60 70 80 90
Crop growth VS. TDC

- Shows growth status of your crop compared to a STANDARD
- Identify stress
- Use crop monitoring to improve decision-making
Field Setup (1 time per season)

FIELD SETUP
- Field Name
- Acreage
- Planting Date
- Cultivar
- Row Spacing
- Re-plant (Y/N)
- FN
- Stand count
SQUAREMAN Data

- Start at PHS
 (Usually node 5-6).
- Collect weekly.
- 4 areas/field.

Plant Height

SQUAREMAP
SQUAREMAN Crop Growth Curve: Early Development

Days from Planting

Squaring Nodes

Target
Actual

0 2.5 5 7.5 10 12.5
0 30 40 50 60 70 80 90
SQUAREMAN Crop Growth Curve: Flat Slope

Days from Planting

Squaring Nodes

- Actual
- Target
SQUAREMAN Crop Growth Curve: Steep Slope after Slow Start

![Graph showing crop growth over days from planting](image-url)

Axes:
- Y-axis: Squaring Nodes
- X-axis: Days from Planting

Legend:
- **Target**
- **Actual**

Data Points:
- Squaring Nodes:
 - Node 1: 10 ft
 - Node 2: 7.5 ft
 - Max Node: 30 ft
 - Target Node: 40 ft
 - Actual Node: 50 ft

Calibration:
- 0 to 12.5 on the Y-axis
- 30 to 90 on the X-axis
Maturity

Key to better end-of-season management is an accurate in-season measure of maturity.
Standard measures of maturity

- % open bolls
- NACB

Require us to “guess” about which boll population is the last one we can pick
COTMAN removes “GUESSING” from end-of-season management

Defines the **Last Effective** boll population:

- % boll retention
- Contribution to yield
- Plant development
- Weather data
Boll Retention

NAWF = 5

% Retention, 1st Position Bolls
Flower Power

NAWF = 5

Seedcotton (lb)/100 Flowers
Contribution of Lint Yield Above NAWF = 5, 4, and 3
Texas Upper Gulf Coast

2005-06, Irrigated, 1500 lbs lint
2005, Dryland, 750 lbs lint
BOLLMAN Data (NAWF)

- Collected once per week
- Start at first flower
- Count # of nodes above white flower.
- Get 5 counts from 1 row and 5 from adjacent row.
- Repeat at 4 locations in the field.
BOLLMAN Data (NAWF)

- Stop counting at the last unfurled leaf in the plant terminal. (BE CONSISTENT)

- Collect NAWF data until cutout (NAWF = 5).
Use COTMAN to identify **cutout**:

- Physiological (Crop)
- Seasonal (Weather)
Cutout

Physiological cutout

- Cutout based on crop development (carrying capacity) - No end-of-season weather restraints
- \(\text{NAWF} = 5 \) prior to latest possible cutout date. (Bourland et al. 1992)
- Cutout at 80 DAP.
Cutout Con’t.

Seasonal cutout:

- Natural cutout restricted due to weather
- Crop development limited by end-of-season weather constraints (Zhang et al. 1994).
- NAWF = 5 AFTER the latest possible cutout date
Cutout

• From NAWF=5
 – Heat unit calculations begin
 • Historical weather file
 • Actual or current
Are Bolls Safe from Insect Attack?

350 HU’s after flower:
- Bollworm
- Tobacco Budworm
- Boll weevil
- Lygus species

450 HU’s for:
- Stink Bugs

Are Bolls Safe from Insect Attack?

500-550 HU’s after flower:
- Fall Armyworm

650 HU’s for:
- Defoliating insects

COTMAN (End-of-Season)

- NAWF = 5 is the last effective boll population (Weather considerations)
- 350 HU’s and bolls resist insect penetration
- Cutout + 350 HU’s = no more spraying
End of Season Management
(Crop Susceptibility to fruit feeding insects)

- Identify last effective boll population. (NAWF)
- Track heat unit accumulation.
- Stop spraying for:
 - Bollworm
 - Tobacco Budworm
 - Boll weevil
 - Plant Bugs
End of Season Management
(Irrigation)

- Identify last effective boll population. (NAWF)
- Track heat unit accumulation.

- Terminate irrigation.
 - 350-400 DD60’s for North Arkansas
 - 400-450 DD60’s for Central Arkansas
 - 450-500 DD60’s for South Arkansas
End of Season Management (Defoliation)

- Identify last effective boll population. (NAWF)
- Track heat unit accumulation.
- 850 DD60’s start evaluating defoliation.
On-Target Fruit Development Rate, Physiological Cutout

Days from Planting

Squaring Nodes

Latest Possible Cutout

Target Actual

TDC 5
SQUAREMAN on Target, Rapid Decline in Nodes-Above-White-Flower
Slow Square Development, Low Nodes at First Flower, Delayed Cutout

Days from Planting

Squaring Nodes

Days from Planting

Latest Possible Cutout

Target Actual
Overall Average – Insecticide Reduction Effects

<table>
<thead>
<tr>
<th>COTMAN</th>
<th>Full-Season</th>
<th>Difference</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>837.7</td>
<td>839.6</td>
<td>1.90</td>
<td>19.32</td>
</tr>
</tbody>
</table>
Time Requirements

- Approximately 20 minutes per field
- Reduce time for insect scouts
- Two different crews
COTMAN.TAMU.EDU
Thank You
COTTON INCORPORATED
FOR AMERICA'S COTTON GROWERS