Glyphosate-Resistant Populations of *Amaranthus palmeri* Prove Difficult to Control in the Southern United States

R. L. Nichols – Cotton Incorporated
A. S. Culpepper – University of Georgia
C. L. Main – University of Tennessee
M. Marshall – Clemson University
T. Mueller – University of Tennessee
J. Norsworthy – University of Arkansas
R. Scott – University of Arkansas
K. L. Smith – University of Arkansas
L. E. Steckel – University of Tennessee
A. C. York – North Carolina State University

Outline of the Presentation

- Pigweeds, Glyphosate and Transgenic Glyphosate-Resistant Cultivars, Selection
- Distribution of Resistant Populations
 - Reported at weedscience.org (HRAC)
 - Confirmed Populations and Hectares
- Need for New Management Systems
- Impacts on Tillage and Prospects for Conservation of Modes Herbicide Action

Common Pigweed Species (Amaranthus spp.) in North America

Relative Growth Rates of Amaranthus Species

- Amaranthus palmeri > A. retroflexus
- > A. hybridus > A. rudis > A. spinosus
- > *A. albus*
- In height and accumulation of biomass
- Palmer amaranth ~ 65% more biomass at 2 weeks after emergence

Sellers et al. 2003. Weed Science 51:329-333.

Amaranthus palmeri

A dioecious annual herbaceous weed, growing to 1.5-3.0 m producing approx. 500,000 seed/year

Adoption of Glyphosate-Resistant Cultivars in the United States

Percent of Cotton Planted to Glyphosate-Resistant Cultivars

Weed Resistance

"Inherited ability of a weed population to survive and reproduce after exposure to a herbicide dose (rate) that would control an unselected population"

--- Weed Science Society of America

Glyphosate Resistant Weeds

Reported Distribution of Glyphosate-Resistant Palmer amaranth

State	HRAC 6/08		IWSC 6/08	
	sites	hectares	counties	hectares
Arkansas	1	nr	15	304k
Georgia	101-500	100k-1M	20	112k
North Carolina	nr	nr	11	2k
South Carolina	nr	nr	3	4k
Tennessee	<5	101-500	3	1k

Locations Spring 2006

Initial Confirmation of Glyphosate Resistance in Palmer amaranth - Georgia

Additional Populations Confirmed in Arkansas, North Carolina, and Tennessee

More Counties Affected

Populations Continue Expansion; Some Monitoring Efforts Will be Discontinued

Suspected Glyphosate-Resistant Palmer Amaranth – 2005

Fall Seed Collection 2005 (290 Fields)

Resistant Locations 2006 (52 fields)

Cotton, Hoke County, North Carolina Glyphosate-Resistant Palmer Amaranth

Soybean, Wayne County, North Carolina Glyphosate-Resistant Palmer Amaranth

Cotton Weed Management Systems

Conventional

- Full tillage, pre-plant incorporated, early and late post-directed; 2-3 cultivations
- Glyphosate Resistant Cultivar
 - Conservation tillage, burn down, two post emergence glyphosate applications, layby
- Glyphosate Resistant Weed(s)
 - Tillage (?)
 - Pre-emergence residual, glyphosate + residual early post, layby(s), cultivations (?)

Possible Weed Management Program for Glyphosate-Resistant Palmer amaranth in Cotton

burn down – glyphosate + dicamba

pre-emergence – pendimethalin + fomesafen

early post - s-metolachlor

layby – MSMA + diuron

Impacts of Glyphosate-Resistant Palmer amaranth

- Increase complexity and costs of weed management in cotton and soybean
- Compromise conservation tillage in the short term and possibly the long-term
- May precipitate a cascade of resistance in post emergence broad-leaf herbicides

Possible Resistance Cascade in Post Emergence Herbicides

- Glycines 'Solved' ALS resistance in Soybean Weed Management
- If Glyphosate is compromised and
- ALS herbicides are compromised and
- Protoporphryin oxidase herbicides are compromised
- What's left?

Strategies for Management of Glyphosate-Resistant Palmer Amaranth

No new post emergence chemistry in the short term

- **1. Use More Modes of Action**
- 2a. New Cover Crop Strategies or
- **2b. Use Precision Cultivation**
- 3. Rotate with Other Crops to Reduce Populations

Weed biomass in conservation-tilled soybean as affected by cover crop and herbicide regime (51 DAP)

Price, A. J., D. W. Reeves, and M. G. Patterson. 2006. Evaluation of three winter cereals for weed control in conservation-tillage non-transgenic soybean. Renewable Agric. and Food Sys. 21:159-164.

