Impacts of Herbicide Resistant Weeds - Southern States

Weed Science Society of America Annual Meeting – Denver, Colorado February 8, 2010

Robert Nichols, Senior Director, Cotton Incorporated

Acknowledgments

Dr. Joe Armstrong – Oklahoma State University

Dr. Nilda Burgos – University of Arkansas

Dr. Stanley Culpepper – University of Georgia

Dr. Steve Martin – Mississippi State University

Dr. Robert Scott - University of Arkansas

Dr. William Vencill - University of Georgia

Southeastern United States

Acres of Major Agronomic Crops in the Southern United States

Crop	U.S.	Southern Region	% Region
	Acres	X 10 ⁶	%
Soybean	72.5	17.2	23
Winter Wheat	59.6	15.9	27
Maize	83.0	11.6	14
Cotton	12.3	11.4	91
Rice	2.9	2.4	84

Economic Losses to Resistance

The <u>first year</u> is usually worst, when the occurrence is not expected. In <u>subsequent years</u>, increased management costs continue.

<u>Resistance can force changes in production practices</u>.

Outline of Presentation

• Overview of Agronomic Crops and Weeds in the Southern Region

<u>Crop</u> <u>Troublesome Weeds</u>

Rice Warm Season Grasses

Winter Wheat Cool Season Grasses

Corn, Soybean & Cotton Summer Annuals

• For <u>Each Crop</u>:

Most Troublesome Weeds, Resistant Weeds, Herbicides Used, Impact of Resistance on Management

• Concerns for Sustainable Herbicide Use

Sources of Weed and Herbicide Data

Data	References
Major Weeds	Southern Weed Science Society Surveys
Resistant Weeds	Herbicide Resistance Action Committee
Herbicides Used	National Agricultural Statistics Service
Weed Management Programs	State Cooperative Extension Services

U. S. Counties Growing - Rice

Major and Resistant Weeds in Rice

Rank	Weed Species	Resistant	Mode of Action
1 st	Echinochola crus-galli	Yes	PSII & Auxin
2 nd	Oryza sativa*	(Brazil)	ALS
3 rd	Hemp sesbania	No	
4 th	Lemna minor	No	
5 th	Leptochloa spp.	(Thailand)	ACCase
* red rice			

Herbicide Resistance in Rice

- The principal problems are with weedy grasses, especially Echinochloa crus-galli.
- E. crus-gallis is widely resistant to propanil (PSII) and often resistant to quinclorac (phenoxy).
- The standard treatment for grasses is clomazone (carotenoid biosynthesis inhibitors).
- Red rice is a continuing problem because it is conspecific with the crop.
- 'Clearfield' rice cultivars are ALS-resistant by means of conventional breeding. A resistance management program is recommended by the vender.

U. S. Counties Growing Wheat

Winter Wheat Acres Exposed to Herbicide Modes of Action

Major and Resistant Weeds in Winter Wheat

Rank	Weed Species	Resistant	Mode of Action
1 st	Lolium multiflorum	Yes	ACCase & ALS
2 nd	Bromus secalinus	Yes (KS*)	ALS
3 rd	Allium vineale	No	
4 th	Aegilops cylindrica	No	
5 th	Rumex crispus	No	

^{*} Just outside of southern region in an adjacent state

Herbicide Resistance - Winter Wheat

- Broadleaf weeds are managed with inexpensive phenoxy herbicides.
- Problem weeds are grasses, broadleaf biennials, and certain monocots such as wild garlic.
- ALS resistance is wide-spread in the western states; ACCase resistance also occurs in several southern states.
- ACCase resistance frequently changes a one-application program to a two-application program.
- Where both ALS and ACCase resistances occur, pre-emergence herbicides are applied between wheat emergence and the emergence of weedy grasses, a difficult timing.

U. S. Counties Growing - Corn

Corn Acres Exposed to Herbicide Modes of Action

Major and Resistant Weeds in Corn

Rank	Troublesome Weeds	Resistant	Mode of Action
1 st	Ipomea spp.	No	None
2 nd	Panicum texanum	No	None
3 rd	Sorghum halepense	Yes	ACCase, ALS, glycine
4 th	Amaranthus spp.	Yes	Many & Multiple
5 th	Brachiaria platyphylla	No	None

Herbicide Resistance in Corn

- Corn, the largest U.S. crop, is grown in all regions, and is tolerant to many herbicides.
- Triazine and acetanilide herbicides still mainstays of U.S. corn production.
- Transgenic-glyphosate and glufosinate-resistant corn cultivars are increasing in popularity.
- There is concern that the increasing use of glyphosate in corn precludes the positive effect of corn in crop rotations, because it reduces herbicide rotation.

U. S. Counties Growing Soybeans

Soybean Acres Exposed to Herbicide Modes of Action

Major and Resistant Weeds in Soybeans

Rank	Troublesome Weed	Resistant	Mode of Action
1 st	Ipomea spp.	No	None
2 nd	Amaranthus spp.	Yes	Many & Multiple
3 rd	Regional*		

^{*} Amaranthus and Ipomea spp. are ranked highly as troublesome weeds throughout the South. Other weeds are important locally, but not rated highly across region.

Herbicide Resistance in Soybeans

- Dinitroaniline, and to a lesser extent, acetanilide herbicides were widely used in soybeans.
- In the late 1980s and early 1990s, ALS herbicides were widely used in soybeans as a post-emergence complement to pre-emergence herbicides.
- Transgenic glyphosate-resistant cultivars now dominate U.S. soybean culture.
- There is concern that extensive and multiple applications of glyphosate in soybean, often as a solo product has led to serious incidence of glyphosateresistance.

U. S. Counties Growing Cotton

Cotton Acres Exposed to Herbicide Modes of Action

Major and Resistant Weeds in Cotton

Rank	Troublesome Weeds	Resistant	Mode of Action
1 st	Ipomea spp.	No	None
2 nd	Amaranthus spp.	Yes	Many & Multiple
3 rd	Cyperus spp.*	(CA)	N/A
4 th	Cynodon dactylon	No	None

^{*} Cyperus difformis is not a major weed in U.S. row crops, but *C. esculentus* and *C. rotundus* are major weeds.

Herbicide Resistance in Cotton

- Cotton is the least competitive of the top three U.S. summer row crops, because the cotton seedling grows slowly.
- Relatively fewer herbicides are tolerated by cotton than by crops with more vigorous seedlings.
- Cotton weed management has generally required three (or more) treatments, whereas corn and soybean usually require two. {n vs. n-1}
- Cotton is heavily impacted by ALS and glycine resistance in the Southeast and increasingly in the Mid-South area.
- Conservation tillage is potentially at risk.

West Tennessee

Glyphosate Resistant Horseweed

Pre-Plant Herbicide Programs for Conservation Tillage - Cotton

No Glyphosate-Resistant
Conzya canadense

<u>Glyphosate-Resistant</u> <u>Conzya canadense</u>

Glyphosate – \$12.70/acre

<u>Glyphosate + Dicamba –</u> \$18.77/acre

<u>Total = \$12.70</u>

Flumeturon – \$8.60/acre

<u>Total = \$27.38/acre</u>

Described in Mueller et al. 2005 Weed Tech. 19. 924-933

Herbicide Programs for Cotton - Arkansas

No Glyphosate-Resistant *Amaranthus palmeri*

Glyphosate-Resistant *Amaranthus palmeri*

Technology Fee - \$34.80/acre Pendimenthalin - \$4.48/acre Glyphosate (2x) - \$9.60/acre

Technology Fee - \$34.80/acre

Pyrithiobac + Pendimethalin - \$20.49/acre

Metolachor + Glyphosate - \$18.02/acre

Diuron + MSMA - \$3.46/acre

<u>Total = \$76.77/acre</u>

<u>Total = \$48.88/acre</u>

Herbicide Programs for Cotton - Georgia

No Glyphosate-Resistant *Amaranthus palmeri*

Glyphosate-Resistant *Amaranthus palmeri*

Technology Fee - \$42.18/acre Pendimenthalin - \$4.48/acre Glyphosate (2x) - \$9.60/acre

Technology Fee - \$42.18/acre Fomesafen + Pendimethalin - \$18.62/acre

Metolachor + Glyphosate - \$18.02/acre

Diuron + MSMA - \$3.46/acre

<u>Total = \$82.28/acre</u>

<u>Total</u> = \$56.26/acre

Glyphosate-Resistant Crop Acres (millions)

Total Acres Exposed to Herbicide Modes of Action for Corn, Soybean, Cotton

Distribution of Glyphosate Resistant Weeds in U.S. Cotton

Conzya canadensis – Widespread, AR, TN, NC
Amaranthus palmeri – Southeast & Mid-South
Amaranthus rudis – North Central & East TX
Ambrosia trifida – North Central & West TN
Sorghum halapense – North Delta
Lolium multiflorum – suspected Delta & NC

Summary of Resistance Issues

Crop	Principal Resistant Weed(s)	Impacts
Rice	Echinochloa crus-galli	Sequential Replacement of Modes of Action
Winter Wheat	Lolium multiflorum	Emerging Issues with ACCase, ALS, and Glycine Resistance
Corn, Soybean & Cotton	Annual Broadleaves	Emerging Issues with Resistance

Sustainable Use of Herbicide Modes of Action

- Sustaining the Efficacy of Herbicide Modes of Action (MOAs) is a Critical Issue for U.S. Agriculture.
- Broadleaf weed control in soybean and cotton depends on the continued efficacy of the acetolactate synthase (ALS), glycine, glutamine synthetase, and protophyrinogen oxidase (PPO) modes of herbicide action.
- All these MOAs are compromised to some extent, except the glutamine synthetase MOA.
- Cotton is particularly vulnerable because the PPO mode of action cannot be used over-the-top.
- Technical development and practical implementation of resistance management principles and practices are urgently needed.