Glyphosate Resistant Weeds

August 2009 Update

R. L. Nichols

Years of Usage

Number of Glyphosate-Resistant Species

Years

Numbers of Glyphosate Weed Species by Continent

> North America – 9 South America – 6 Europe – 4 Africa – 3 Australia – 3 Asia – 1

Number of Glyphosate-Resistant Species by Plant Family

Graminaceae – 9 Compositae – 4 Amaranthaceae – 2 Plantaginaceae – 1 Euphorbiaceae – 1

Glyphosate Resistant Weeds in U.S. Cotton

- Horseweed 2000 (DE)
- Palmer amaranth 2004 (GA)
- Giant Ragweed 2005 (AR)
- Water Hemp 2005 (MO)
- Ryegrass 2005 (MS)
- Johnsongrass 2007 (AR)

Glyphosate Resistant Horseweed

Palmer Amaranth

Distribution of Glyphosate Resistant Weeds in U.S. Cotton

Horseweed – Widespread, AR, TN, NC Waterhemp – East TX Palmer amaranth – Southeast & Mid-South **Ryegrass – Delta** Giant Ragweed – West TN Johnsongrass – suspected in Delta

Economic Losses

First year is usually worst, <u>if occurrence is not expected</u> Subsequent years, increased weed management costs Can force change in cultural practices Why Don't We Practice Resistance Management?

- The Usual Problem:
- Costs of Post-Resistance Management Remain Unknown, until Resistance Develops
- Therefore, Additional Current Costs are Rejected, and the Risks of Unknown Future Costs are Accepted

• The New Problem:

We Do Not Have the Next Mode of Action

 A New Mode of Action, if Discovered Today, Would Probably Not be Registered in the U.S. for 7-10 Years

Weed Resistance Management

Managing Herbicide Resistance in Cotton Cropping Systems

Dr. Nilda Burgos, University of Arkansas Dr. Stanley Culpepper, University of Georgia Dr. Peter Dotray, Texas Tech and Texas A&M Universities

Expert Review Panel

The bulletin was reviewed by a panel of internationally recognized experts in pest resistance management from the disciplines of weed science and entomology. The authors thank the experts, listed below, for their assistance and endorsement of the indicated principles.

Dr. Hugh Beckie, Plant Scientist, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada Dr. Ian Denholm, Head of Plant and Invertebrate Ecology, Rothamsted Research Station, United Kingdom Dr. Tim Dennehy, Distinguished Professor and Extension Specialist, University of Arizona Dr. Les Glasgow, Technical Brand Manager Herbicides, Syngenta Crop Protection Dr. Carol Mallory-Smith, Oregon State University, former President Weed Science Society of America Dr. Michael Owen, Professor of Agronomy and Weed Science, Iowa State University Dr. Stephen Powles, Professor & Director, Plant Sciences, University of Western Australia Dr. Christopher Preston, Senior Lecturer, University of Adelaide, South Australia Dr. Dale Shaner, USDA-ARS, Colcrado State University, President Weed Science Society of America Dr. Alan York, Distinguished Professor, North Carolina State University

Summary

Resistance occurs when a genetic change allows a population of weeds to survive a herbicide treatment to which the original population was susceptible. Individual plants of weed species that are resistant to a particular herbicide are typically present in untreated populations at very low frequencies. These few resistant individuals survive a herbicide application and reproduce, whereas susceptible individuals are killed and do not reproduce. The percentage of resistant individuals increases over time as the herbicide treatment is repeated. Weed scientists began identifying resistant weed biotypes (genotypes) about 40 years ago, and the number of weeds with resistant biotypes has increased in recent years. Use of a few modes of herbicide action in the major row crops, cotton (Gossypium hirsutum), corn (Zea mays), and soybean (Glycine max), has selected for resistance in certain weeds. Widespread use of the acetolactate synthase (ALS) inhibiting herbicides and glyphosate has led to resistance to one or both of these modes of action in weeds including Palmer amaranth (Amaranthus palmeri), common cocklebur (Xanthium strumarium), and horseweed (Conyza canadensis). Growers should diversify weed management tactics to avoid selecting more resistant weeds. Scout to detect uncontrolled weeds early and prevent movement of possibly resistant weed seed among fields. To reduce the rate of resistance buildup, practice rotation of all management factors where possible, including type of tillage, crops grown, and herbicide modes of action. Crop monoculture and continuous use of the same modes of action will accelerate resistance buildup and increase the difficulty and cost of weed control.

What is Herbicide Resistance?

Herbicide resistance is the inherited ability of a weed biotype to survive and reproduce despite exposure to a dose of herbicide that previously was effective on an unselected population. Application of a herbicide may reveal individuals within a population that already possess the capacity to survive exposure. Repeated, successive use of one herbicide, or herbicides with the same mode of action, increases the likelihood that resistant individuals will survive and reproduce

How are Weed Populations Selected for Resistance? The rate at which a resistant weed population is selected depends on the number and frequency of herbicide applications the population receives, the size of the population and its genetic diversity, and characteristics of the herbicide target site. Resistance buildup is accelerated when the nent of crops does not include diverse tactics that

limit herbicide use such as crop rotation and mechanical weed management. For example, there may be more opportunities for resistance buildup in conservation tillage because weeds are not killed by mechanical disturbance and non-selective herbicides such as glyphosate, paraquat, or glufosinate are used for pre-plant burndown

Dr. J. Andrew Kendig, University of Missouri

Dr. John Wilcut, North Carolina State University Dr. Robert Nichols, Cotton Incorporated

What are Herbicide Modes of Action?

Mode of action describes the plant process affected by the herbicide that results in death of susceptible plants. The mode of action involves the physiology of the weed and typically involves interference with a specific biochemical mechanism that the weed requires for growth and development. Herbicides with similar chemical structures tend to have the same mode of action. The herbicides labeled in all major row crops represent only a few modes of action. (Table 1.) See the training module - http://www.cotton.org/tech/pest/wrm.

 Guidelines to Scout for Resistant Weeds

 Principles of Resistance Management

 Herbicide Recommendations for Cotton, Soybean, and Corn