Q and B biotypes- distribution, crop-relation, and their relevance to insecticide resistance

Rami Horowitz, Svetlana Kontsedalov, Vadim Khasdan Haggai Breslauer and Isaac Ishaaya ARO, Dept. of Entomology, Gilat Research Center The Volcani Center, Bet Dagan, Israel

biotype B

biotype Q

Two biotypes of *B. tabaci* have been identified in Israel: B - (early 1990's) Q - (2000)

RAPD-PCR products of various Bemisia tabaci strains from Israel

Lane 1- DNA ladder; 5- a sample without DNA

Lanes 2, 4, 7- samples from Sde-Eliyahu, w-Negev & standard B Lanes 3, 6 – samples from the Carmel Coast & standard Q

Crossing studies, Q/B (field strains)

Parents		Offspring		1947 24 19 19
Females 20	Males 40	Females	Males	Sex ratio Female: Male
Negev (B)	Negev (B)	360	206	1.0:0.7
Negev (B)	Arava (Q)	0	245	0.0:1.0
Arava (Q)	Arava (Q)	458	316	1.0:0.7
Arava (Q)	Negev (B)	6?	503	0.01:1.0

Organic vs. conventional crops

 In the Arava Valley (Israel); biotype survey was conducted during 2004 – 2005.

- Greenhouse organic peppers, cucumbers and melons – B.
- Conventional greenhouses Mostly Q

Proportion of *B. tabaci* biotype Q and B sampled from sunflower and cotton fields during 2005 cotton season in the Ayalon Valley, Israel

Proportion of *B. tabaci* biotype Q and B sampled from sunflower and cotton fields during 2005 cotton season in the Carmel Coast, Israel

Biotype tolerance to insecticides affects their field composition

Various populations of *Bemisia tabaci* collected in Israel, their biotype definition and resistance to pyriproxyfen

Strain	Collection date	Location	Biotype	Resistance (RR)
* S	1987	Tzor'a	В	1
Yesha-99	1999	W- Negev	В	2
BD-00	2000	Bet Dagan	В	4
Negev-00	2000	W- Negev	В	0.4
BS-00	2000	Bet She'an	В	9
*Pyri-R	1991	GH, W- Negev	Q	1,200
HC-00	2000	Carmel Coast	Q	637
AV-99	1999	Ayalon Valley	<mark>Q>b</mark>	167
AV-00	2000	Ayalon Valley	Q>b	81
W-Gal	2000	W- Galilee	Q>b	25

Monitoring pyriproxyfen resistance, Carmel Coast 2002-3

Resistance to Pyriproxyfen and biotype Q

 In areas where the use of pyriproxyfen ceased, resistance levels declined to some extent, while...

 Level of susceptibility was restored completely in the lab (gen. 15-20).

Siotype-related resistance?

Monitoring Pyriproxyfen Resistance, Ayalon Valley, Israel

The Near

Lab assays

Susceptibility of *B. tabaci* strain (AV-02) to pyriproxyfen Laboratory conditions (15th generations)

Mix of Q&B (1:1, with similar R) maintained for 20 generations; partly pressurized with pyriproxyfen; another part - kept untreated

mix-G20

Proportion of *B. tabaci* biotypes throughout the generations

Generation	untreated	Pyri- selection
G-0	1B:1Q	1B:1Q
G-4	В	1B:1Q
G-8	В	Q>B
G-12	В	Q
G-16	В	Q
G-20	В	Q

Interaction of B. tabaci Biotype

- 1. Both the B and Q biotypes are present in Israel
- 2. Field populations may consist of a mixture of biotypes
- 3. Reproductive incompatibility maintains their genetic isolation
- 4. A possible link exists between *B. tabaci* biotypes and insecticide resistance
- 5. Tolerance of Q-type to pyriproxyfen, neonicotinoids and other new insecticides (?)
- 6. Without exposure to insecticides higher fitness to "B" (?)
- 7. Insecticide applications select for Q-type.

We can surmise the following scenario

Appearance of Q biotype accompanies resistance to pyriproxyfen and/or neonicotinoids.

Treatments in accordance with IRM programs moderate selection for resistance to those insecticides and concurrently reduce the appearance of the Q-type.

Reuse of the above insecticides against *B. tabaci* may increase occurrence of the Q-type and development of resistance to one or another group of insecticides.

(Selection to insecticides in B biotype of *B. tabaci* is feasible, but it is probably slower than in the Q type).

Unsolved questions

- 1. Does B-type have higher fitness than Q-type (is it more competitive)?
- 2. Why does "B" take over "Q" after several generations under lab conditions?
- 3. Reproductive barrier: attraction, mating behavior, fertility, symbiont related?

Thanks for our attention

