Q and B biotypes—distribution, crop relation, and their relevance to insecticide resistance

Rami Horowitz, Svetlana Kontsedalov, Vadim Khasdan Haggai Breslauer and Isaac Ishaaya
ARO, Dept. of Entomology, Gilat Research Center
The Volcani Center, Bet Dagan, Israel
Two biotypes of *B. tabaci* have been identified in Israel:

- **B** - (early 1990’s)
- **Q** - (2000)
RAPD-PCR products of various *Bemisia tabaci* strains from Israel

Lane 1 - DNA ladder; 5 - a sample without DNA

Lanes 2, 4, 7 - samples from Sde-Eliyahu, w-Negev & standard B

Lanes 3, 6 – samples from the Carmel Coast & standard Q
Biotypes of *B. tabaci* in Israel, 2002-5
Crossing studies, Q/B (field strains)

<table>
<thead>
<tr>
<th>Parents</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td></td>
<td>Females</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Negev (B)</td>
<td>Negev (B)</td>
</tr>
<tr>
<td>Negev (B)</td>
<td>Arava (Q)</td>
</tr>
<tr>
<td>Arava (Q)</td>
<td>Arava (Q)</td>
</tr>
<tr>
<td>Arava (Q)</td>
<td>Negev (B)</td>
</tr>
</tbody>
</table>
In the Arava Valley (Israel); biotype survey was conducted during 2004–5.
Organic vs. conventional crops

- In the Arava Valley (Israel); biotype survey was conducted during 2004 – 2005.

- Greenhouse organic peppers, cucumbers and melons – B.

- Conventional greenhouses – Mostly Q
Proportion of *B. tabaci* biotype Q and B sampled from sunflower and cotton fields during 2005 cotton season in the Ayalon Valley, Israel

![Graph showing the proportion of *B. tabaci* biotype Q and B sampled from sunflower and cotton fields during 2005 cotton season in the Ayalon Valley, Israel. The graph includes dates from May 3 to August 24, with labeled applications of Endosulfan, 'Polo', and Cypermethrin. The graph also indicates the percent of Q insects in sunflower and cotton fields.]
Proportion of *B. tabaci* biotype Q and B sampled from sunflower and cotton fields during 2005 cotton season in the Carmel Coast, Israel.

The graph shows the proportion of *B. tabaci* biotype Q and B from May 31 to August 24, with data points marked for each date. The graph includes annotations for Endosulfan and ‘Polo’ treatments and shows the percentage of Q biotype in both sunflower and cotton fields.
Biotype tolerance to insecticides affects their field composition

A ↔ B
B ↔ Q
Various populations of *Bemisia tabaci* collected in Israel, their biotype definition and resistance to pyriproxyfen

<table>
<thead>
<tr>
<th>Strain</th>
<th>Collection date</th>
<th>Location</th>
<th>Biotype</th>
<th>Resistance (RR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1987</td>
<td>Tzor’a</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>Yesha-99</td>
<td>1999</td>
<td>W- Negev</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>BD-00</td>
<td>2000</td>
<td>Bet Dagan</td>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>Negev-00</td>
<td>2000</td>
<td>W- Negev</td>
<td>B</td>
<td>0.4</td>
</tr>
<tr>
<td>BS-00</td>
<td>2000</td>
<td>Bet She’an</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>Pyri-R</td>
<td>1991</td>
<td>GH, W- Negev</td>
<td>Q</td>
<td>1,200</td>
</tr>
<tr>
<td>HC-00</td>
<td>2000</td>
<td>Carmel Coast</td>
<td>Q</td>
<td>637</td>
</tr>
<tr>
<td>AV-99</td>
<td>1999</td>
<td>Ayalon Valley</td>
<td>Q>b</td>
<td>167</td>
</tr>
<tr>
<td>AV-00</td>
<td>2000</td>
<td>Ayalon Valley</td>
<td>Q>b</td>
<td>81</td>
</tr>
<tr>
<td>W-Gal</td>
<td>2000</td>
<td>W- Galilee</td>
<td>Q>b</td>
<td>25</td>
</tr>
</tbody>
</table>
Monitoring pyriproxyfen resistance,
Carmel Coast 2002-3

Egg mortality (%) vs. Concentration (ppm)

Early season

Late season

B

Q

2002LS
2003ES
2003LS

HC-03-tig
Resistance to Pyriproxyfen and biotype Q

- In areas where the use of pyriproxyfen ceased, resistance levels declined to some extent, while...
- Level of susceptibility was restored completely in the lab (gen. 15-20).
- Biotype-related resistance?
Monitoring Pyriproxyfen Resistance, Ayalon Valley, Israel
Lab assays
Susceptibility of *B. tabaci* strain (AV-02) to pyriproxyfen

Laboratory conditions (15th generations)

Egg mortality (%)

- **S** = susceptible
- **G0** = the original strain
- **Unt** = untreated
- **Act** = selection to Actara (thiamethoxam)
- **Msp** = selection to Mospilan (acetamiprid)
Mix of Q&B (1:1, with similar R) maintained for 20 generations; partly pressurized with pyriproxyfen; another part - kept untreated.
Proportion of *B. tabaci* biotypes throughout the generations

<table>
<thead>
<tr>
<th>Generation</th>
<th>untreated</th>
<th>Pyri-selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-0</td>
<td>1B:1Q</td>
<td>1B:1Q</td>
</tr>
<tr>
<td>G-4</td>
<td>B</td>
<td>1B:1Q</td>
</tr>
<tr>
<td>G-8</td>
<td>B</td>
<td>Q>B</td>
</tr>
<tr>
<td>G-12</td>
<td>B</td>
<td>Q</td>
</tr>
<tr>
<td>G-16</td>
<td>B</td>
<td>Q</td>
</tr>
<tr>
<td>G-20</td>
<td>B</td>
<td>Q</td>
</tr>
</tbody>
</table>
Interaction of *B. tabaci* Biotype

1. Both the B and Q biotypes are present in Israel
2. Field populations may consist of a mixture of biotypes
3. Reproductive incompatibility maintains their genetic isolation
4. A possible link exists between *B. tabaci* biotypes and insecticide resistance
5. Tolerance of Q-type to pyriproxyfen, neonicotinoids and other new insecticides (?)
6. Without exposure to insecticides – higher fitness to “B” (?)
7. Insecticide applications select for Q-type.
We can surmise the following scenario:

Appearance of Q biotype accompanies resistance to pyriproxyfen and/or neonicotinoids.

Treatments in accordance with IRM programs moderate selection for resistance to those insecticides and concurrently reduce the appearance of the Q-type.

Reuse of the above insecticides against *B. tabaci* may increase occurrence of the Q-type and development of resistance to one or another group of insecticides.

(Selection to insecticides in B biotype of *B. tabaci* is feasible, but it is probably slower than in the Q type).
Unsolved questions

1. Does B-type have higher fitness than Q-type (is it more competitive)?

2. Why does “B” take over “Q” after several generations under lab conditions?

3. Reproductive barrier: attraction, mating behavior, fertility, symbiont related?
Thanks for your attention